17 research outputs found

    Study of the railway vehicle suspension using the multibody method

    Get PDF
    The article presents a mathematical model for the study of a passenger coach hunting motion using the multibody approach. The model comprises the lateral displacement, rolling and yawing motions for the main constitutive elements: axles, bogies and case. The equation system is written applying energetic methods. The forced vibrations determined by the irregular profile of the tracks are considered. The wheel ā€“ rail contact forces are expressed using the creepage coefficients established according to Kalker's linear theory. The equations system is solved through numeric methods using specialized calculus programs. The response of the system ā€“ passenger coach on a tangent track, the critical speed and the influence of the constructive characteristics of the coach on its performances are determined

    A magneto rheological hybrid damper for railway vehicles suspensions

    Get PDF
    High speed railway vehicles features a specific lateral oscillation resulting from the coupled lateral displacement and yaw of the wheelset which leads to a sinusoid movement of the wheelset along the track, transferred to the entire vehicle. The amplitude of this oscillation is strongly dependant on vehicleā€™s velocity. Over a certain value, namely the critical speed, the instability phenomenon so-called hunting occurs. To raise the vehicleā€™s critical speed different designs of the suspension all leading to a much stiffer vehicle can be envisaged. Different simulations prove that a stiffer central suspension will decrease the passengerā€™s comfort in terms of lateral accelerations of the carboy. The authors propose a semi-active magneto rheological suspension to improve the vehicleā€™s comfort at high speeds. The suspension has as executive elements hybrid magneto rheological dampers operating under sequential control strategy type balance logic. Using an original mathematical model for the lateral dynamics of the vehicle the responses of the system with passive and semi-active suspensions are simulated. It is shown that the semi-active suspension can improve the vehicle performances

    Experimental analysis for aerodynamic drag of the electric locomotives

    Get PDF
    The purpose of this paper is to make a comparative analysis on the influence of the aerodynamic drag, in case of the electric rail vehicles for a series of situations encountered in exploitation. The article presents experimental results obtained following a geometric modelling at scale 1: 12, on a modular model for the electric locomotives LE 060EA 5100kW and LE-MA 060 TransMontana 6000kW. Tests were made at INCAS (National Institute for Aerospace Research ā€œElieCarafoliā€) in the subsonic wind tunnel

    Experimental determinations of the aerodynamic drag for vehicles subjected to the ground effect

    No full text
    A moving vehicle creates a flow of the surrounding air, continuous and compressible fluid. When the movement is at a constant speed, the air flow is not time dependent and the flow distribution lines are constant. In fact, however, a vehicle moves in an environment where the air itself is in a continuous motion. In addition, there are many side obstacles, such as passing objects, stationary vehicles, artwork, etc. All these factors affect the air flow along the vehicle. The shape and speed of the current lines are affected as compared with time. Based on these considerations, the aerodynamics of any ground vehicle is a non-stationary process. The study of non-stationary phenomena may be related to a steady state study using finite difference method, in which time is divided into finite intervals Ī”t, small enough so that during a specific period a phenomenon may be considered as stationary. If speeds involved are in subsonic regime, solving the equations of motion is simplified. We may consider therefore that the vehicle is moving at speed V1 in the air mass at rest, or both, the vehicle is at rest in a stream of air at speed V1 (this is the particular case of the wind tunnels). For speeds of up to Mach 0.5, the effect of compressibility of air does not influence at all or has very little influence on a flow. In this case, the air density may be considered constant. Also, the effect of viscosity can be neglected in most of the space occupied by the fluid. In order to illustrate the influence of the aerodynamic drag on a ground-effect vehicle we performed a test in the subsonic wind tunnel of the INCAS

    The influence of aerodynamic forces on the vehicle bodywork of railway traction

    No full text
    The increase of the driving speed in railway system requires a comprehensive analysis on the vehicle aerodynamics, on the manner in which the performance is affected or related to the additional loads on various components. The aerodynamic forces have a greater impact in the case of medium and high values of the relative velocity of the air flow near the vehicle. This paper aims to analyze the loads caused by the aerodynamic forces on the bodywork of the electric locomotive, of 5100 kW LE 060 EA type. In this respect, the bodywork and the chassis of locomotive were modelled in a 3D format; then a series of air flow simulations were performed for different values of the vehicle velocity ranging between 0 km/h and 200 km/h

    The impact of aerodynamics on fuel consumption in railway applications

    No full text
    The main consequence of on air flow surrounding a moving train resides in the aerodynamic drag and a certain pressure distribution on the frontal and lateral surfaces of the vehicle. The actual value of the aerodynamic drag (if pre-determined) may lead to a more accurate design of the whole locomotive power transmission. The aerodynamic drag may be estimated by using two specific experiments: the traction method and the free launch method. While the first one uses highly complex equipment, the second is easier to use due to the relative low number of devices required. The present workā€™s main goal is to illustrate the importance of aerodynamic design of the railway vehicles, as their performances are influenced by the aerodynamic drag. In order to illustrate the influence of the aerodynamic shape of o locomotive body, we have chosen the latest diesel model available on the local market, the Class 621 EGM locomotives, currently in service at the national passenger railway operator, CFR Călători SA

    Analyze of aerodynamic forces acting on the Siemens Desiro railcar

    No full text
    This paper aims to examine the influence of aerodynamic forces acting on the Siemens Desiro railcar, and the percentage of these forces in the total values of resistance to motion. In this regard the numerical simulation of the airflow is used as a method of analysis. We started from the 3D geometric model at a scale of 1:1 of the vehicle bodywork constructive form. The air flow simulation is performed taking into account the speed limits of the vehicle namely 0 km/ h and 140 km/ h, interval in which eight point values are chosen

    Influence of wind on aerodynamic drag for the second case of the arrangement of the equipment on the LE 060EA locomotive bodywork

    No full text
    The electric power supply equipment of electric railways vehicles of surface is placed on the their body. The arrangement of the equipment on the vehicle body determines the variation of the aerodynamic drag. The gusts of wind occurring during the vehicle movement result in additional requests. The case of the locomotive of type LE 060 EA 5100kW moving with the second driving position is analyzed in this paper. For this particular case the components ensemble of the power supply system was geometric modelled in 3D format at 1:1 scale. The resulted model was placed in air flow simulation software to determine the aerodynamic resistance. The wind influence is analyzed for five point values of its speed. The wind direction is simulated by eight point values of the angle that it makes to the longitudinal axis of the vehicle

    Analysis of the wind influence on the aerodynamic drag in the case of a certain emplacement of the pantograph on the electric rail vehicles

    No full text
    The wind gusts with high speed can negative affect the operation of the railway electric vehicles. These vehicles can achieve high performances, as long as the power supply is ensured, without discontinuities or interruptions in the process. This work aims at conducting an analysis regarding the wind influence with regard to the energy collector placed on the vehicle bodywork taking in account a certain positioning of the active pantograph. To this end, in a first step, the EP3 pantograph which was raised to its maximum working height was 3-D modeled. As regards the simulation, we consider the case in which the equipment is placed on the vehicle so that the angle formed by the articulation of the arms is pointing in the direction of the air flow. The simulation is carried out for different points of the angles ranging between [0o, 180o] at the relative velocity of the fluid of 0m / s, 10m / s, 20m / s and 30m / s

    Study on aerodynamic resistance to electric rail vehicles generated by the power supply

    No full text
    Improving the traction performance of the electric railway vehicles requires an analysis to reduce their aerodynamic resistance. These vehicles cannot be set in motion without an external power source, which demonstrates that the supply system is a key-element to their operation. The power source is located on the rooftop which basically results in an increase of their aerodynamic resistance. The present study discusses the aerodynamic resistance of the electric railway equipment such as pantographs, automatic circuit breaker, insulators, etc. The analyze is based on the equipment installed on the electric locomotive LE 060 EA of 5100 kW which is operational in Romania, emphasizing the pantographs role in capturing of electricity
    corecore