8 research outputs found

    The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    Get PDF
    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control

    Incomplete reprogramming after fusion of human multipotent stromal cells and bronchial epithelial cells

    No full text
    Bone marrow-derived progenitor cells can fuse with cells of several different tissues, including lung, especially following injury. Despite many reports of cell fusion, few studies have examined the function of the resulting hybrid cells. We cocultured human multipotent stromal cells (hMSCs) and normal human bronchial epithelial cells (NHBEs) and observed the formation of hMSC/NHBE heterokaryons. The heterokaryons expressed several proteins characteristic of epithelial cells, such as keratin and occludin. Hybrid cells also expressed the mRNAs and proteins for 2 important ion channels that maintain bronchial and alveolar fluid balance: the cystic fibrosis transmembrane conductance regulator (CFTR) and the amiloride-sensitive epithelial Na+ channel (ENaC). By immunocytochemistry, CFTR was expressed in many hybrid cells but was absent or low in others. Whole-cell patch-clamp recordings demonstrated a glibenclamide-sensitive current in the presence of barium chloride, consistent with functional CFTR channels, in control NHBEs and hMSC/NHBE heterokaryons. Total cell capacitance measurements showed that the membrane surface area of heterokaryons was similar to that of NHBEs. Heterokaryons expressed the α- and γ-ENaC subunits but did not express the β-ENaC subunit, indicating the inability to form a complete ENaC channel. In addition, hybrid cells formed by the fusion of hMSCs with immortalized bronchial cells that expressed CFTR ΔF508 did not lead to reprogramming of the hMSC nucleus and expression of wild-type CFTR mRNA. Our data show that reprogramming can be incomplete following fusion of adult progenitor cells and somatic cells and may lead to altered cell function.—Curril, I. M., Koide, M., Yang, C. H., Segal, A., Wellman, G. C., Spees, J. L. Incomplete reprogramming after fusion of human multipotent stromal cells and bronchial epithelial cells

    The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    No full text
    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control

    Erratum to: The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    No full text
    After publication of our recent article [1] we noticed that Monica Munoz-Torres had been omitted from the author list. We have now added her, and the updated Funding and Authors’ contributions sections are below

    Additional file 4: of The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    No full text
    Supplementary material: C. capitata chemoreceptor genes. (DOCX 194 kb

    Additional file 2: of The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    No full text
    Supplementary Tables S1–S26. Table S1 C. capitata genome and RNA-seq source material and sequencing runs. Table S2 Pluralibacter gergoviae genome metrics. Table S3 P. gergoviae genes associated with general functional categories. Table S4 BUSCO genome assembly comparisons between C. capitata, D. melanogaster, and Bactrocera species. Table S5a Orthology tables - Copy numbers. Table S5b Orthology tables - Orthologous groups. Table S5c Orthology tables - Counts by species. Table S6 Chromosomal positions for mapped scaffolds. Table S7 C. capitata transposable element sequences. Table S8 C. capitata microRNA sequences. Table S9 microRNA/siRNA/piRNA machinery in C capitata. Table S10 C. capitata odorant-binding protein (OBP) genes. Table S11 C. capitata odorant receptor (OR) genes. Table S12 C. capitata gustatory receptor (GR) gene assignments. Table S13 C. capitata ionotrophic receptor (IR) gene assignments. Table S14 C. capitata aquaporin genes. Table S15 Immunity-related gene comparisons for C. capitata, D. melanogaster, and M. domestica. Table S16 P450 genes in the C. capitata genome. Table S17 Carboxylesterase genes in the C. capitata genome. Table S18 Glutathione S-transferase (GST) genes in the C. capitata genome. Table S19 CysLGIC superfamily genes in C. capitata and other insect genomes. Table S20 C. capitata cuticle protein genes. Table S21 Putative cuticle proteins per family in the C. capitata genome. Table S22 Cuticle protein gene clusters in the C. capitata genome. Table S23 C. capitata sex-determination gene orthologs. Table S24 Putative seminal fluid protein (SFP) genes in the C. capitata genome. Table S25 C. capitata genes related to the apoptotic pathway of D. melanogaster. Table S26 Community RNA-Seq data for the genome assembly (XLSX 6240 kb

    The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    No full text
    corecore