59 research outputs found

    Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability

    Get PDF
    BACKGROUND: The emergence of eukaryotes was characterized by the expansion and diversification of several ancient RNA-binding domains and the apparent de novo innovation of new RNA-binding domains. The identification of these RNA-binding domains may throw light on the emergence of eukaryote-specific systems of RNA metabolism. RESULTS: Using sensitive sequence profile searches, homology-based fold recognition and sequence-structure superpositions, we identified novel, divergent versions of the Sm domain in the Scd6p family of proteins. This family of Sm-related domains shares certain features of conventional Sm domains, which are required for binding RNA, in addition to possessing some unique conserved features. We also show that these proteins contain a second previously uncharacterized C-terminal domain, termed the FDF domain (after a conserved sequence motif in this domain). The FDF domain is also found in the fungal Dcp3p-like and the animal FLJ22128-like proteins, where it fused to a C-terminal domain of the YjeF-N domain family. In addition to the FDF domains, the FLJ22128-like proteins contain yet another divergent version of the Sm domain at their extreme N-terminus. We show that the YjeF-N domains represent a novel version of the Rossmann fold that has acquired a set of catalytic residues and structural features that distinguish them from the conventional dehydrogenases. CONCLUSIONS: Several lines of contextual information suggest that the Scd6p family and the Dcp3p-like proteins are conserved components of the eukaryotic RNA metabolism system. We propose that the novel domains reported here, namely the divergent versions of the Sm domain and the FDF domain may mediate specific RNA-protein and protein-protein interactions in cytoplasmic ribonucleoprotein complexes. More specifically, the protein complexes containing Sm-like domains of the Scd6p family are predicted to regulate the stability of mRNA encoding proteins involved in cell cycle progression and vesicular assembly. The Dcp3p and FLJ22128 proteins may localize to the cytoplasmic processing bodies and possibly catalyze a specific processing step in the decapping pathway. The explosive diversification of Sm domains appears to have played a role in the emergence of several uniquely eukaryotic ribonucleoprotein complexes, including those involved in decapping and mRNA stability

    Outreach activities for kidney diseases in children

    No full text

    Single-cell profiling of myasthenia gravis identifies a pathogenic T cell signature

    Get PDF
    Myasthenia gravis (MG) is an autoimmune disease characterized by impaired neuromuscular signaling due to autoantibodies targeting the acetylcholine receptor. Although its auto-antigens and effector mechanisms are well defined, the cellular and molecular drivers underpinning MG remain elusive. Here, we employed high-dimensional single-cell mass and spectral cytometry of blood and thymus samples from MG patients in combination with supervised and unsupervised machine-learning tools to gain insight into the immune dysregulation underlying MG. By creating a comprehensive immune map, we identified two dysregulated subsets of inflammatory circulating memory T helper (Th) cells. These signature ThCD103 and ThGM cells populated the diseased thymus, were reduced in the blood of MG patients, and were inversely correlated with disease severity. Both signature Th subsets rebounded in the blood of MG patients after surgical thymus removal, indicative of their role as cellular markers of disease activity. Together, this in-depth analysis of the immune landscape of MG provides valuable insight into disease pathogenesis, suggests novel biomarkers and identifies new potential therapeutic targets for treatment

    Changing Trends in Complications and Mortality Rates Among US Youth and Young Adults With HIV Infection in the Era of Combination Antiretroviral Therapy

    No full text
    Background. Combination antiretroviral therapy (cART) has resulted in a dramatic decrease in human immunodeficiency virus (HIV)–related opportunistic infections and deaths in US youth, but both continue to occur. Methods. We estimated the incidence of complications and deaths in IMPAACT P1074, a long-term US-based prospective multicenter cohort study conducted from April 2008 to June 2014. Incidence rates of selected diagnoses and trends over time were compared with those from a previous observational cohort study, P219C (2004–2007). Causes of death and relevant demographic and clinical features were reviewed. Results. Among 1201 HIV-infected youth in P1074 (87% perinatally infected; mean [standard deviation] age at last chart review, 20.9 [5.4] years), psychiatric and neurodevelopmental disorders, asthma, pneumonia, and genital tract infections were among the most common comorbid conditions. Compared with findings in P219C, conditions with significantly increased incidence included substance or alcohol abuse, latent tuberculosis, diabetes mellitus, atypical mycobacterial infections, vitamin D deficiency or metabolic bone disorders, anxiety disorders, and fractures; the incidence of pneumonia decreased significantly. Twenty-eight deaths occurred, yielding a standardized mortality rate 31.5 times that of the US population. Those who died were older, less likely to be receiving cART, and had lower CD4 cell counts and higher viral loads. Most deaths (86%) were due to HIV-related medical conditions. Conclusions. Opportunistic infections and deaths are less common among HIV-infected youth in the US in the cART era, but the mortality rate remains elevated. Deaths were associated with poor HIV control and older age. Emerging complications, such as psychiatric, inflammatory, metabolic, and genital tract diseases, need to be addressed

    Correction to: Single‑cell profiling of myasthenia gravis identifies a pathogenic T cell signature

    Full text link
    Myasthenia gravis (MG) is an autoimmune disease characterized by impaired neuromuscular signaling due to autoantibodies targeting the acetylcholine receptor. Although its auto-antigens and effector mechanisms are well defined, the cellular and molecular drivers underpinning MG remain elusive. Here, we employed high-dimensional single-cell mass and spectral cytometry of blood and thymus samples from MG patients in combination with supervised and unsupervised machine-learning tools to gain insight into the immune dysregulation underlying MG. By creating a comprehensive immune map, we identified two dysregulated subsets of inflammatory circulating memory T helper (Th) cells. These signature ThCD103 and ThGM cells populated the diseased thymus, were reduced in the blood of MG patients, and were inversely correlated with disease severity. Both signature Th subsets rebounded in the blood of MG patients after surgical thymus removal, indicative of their role as cellular markers of disease activity. Together, this in-depth analysis of the immune landscape of MG provides valuable insight into disease pathogenesis, suggests novel biomarkers and identifies new potential therapeutic targets for treatment
    • …
    corecore