276 research outputs found

    Tensegrity and mechanoregulation: from skeleton to cytoskeleton

    Get PDF
    AbstractObjective: To elucidate how mechanical stresses that are applied to the whole organism are transmitted to individual cells and transduced into a biochemical response.Design: In this article, we describe fundamental design principles that are used to stabilize the musculoskeletal system at many different size scales and show that these design features are embodied in one particular form of architecture that is known as tensegrity.Results: Tensegrity structures are characterized by use of continuous tension and local compression; architecture, prestress (internal stress prior to application of external force), and triangulation play the most critical roles in terms of determining their mechanical stability. In living organisms, use of a hierarchy of tensegrity networks both optimizes structural efficiency and provides a mechanism to mechanically couple the parts with the whole: mechanical stresses applied at the macroscale result in structural rearrangements at the cell and molecular level.Conclusion: Due to use of tensegrity architecture, mechanical stress is concentrated and focused on signal transducing molecules that physically associate with cell surface molecules that anchor cells to extracellular matrix, such as integrins, and with load-bearing elements within the internal cytoskeleton and nucleus. Mechanochemical transduction may then proceed through local stress-dependent changes in molecular mechanics, thermodynamics, and kinetics within the cell. In this manner, the entire cellular response to stress may be orchestrated and tuned by altering the prestress in the cell, just as changing muscular tone can alter mechanical stability and structural coordination throughout the whole musculoskeletal system

    Method and apparatus for displaying information

    Get PDF
    A method for displaying large amounts of information. The method includes the steps of forming a spatial layout of tiles each corresponding to a representative reference element; mapping observed elements onto the spatial layout of tiles of representative reference elements; assigning a respective value to each respective tile of the spatial layout of the representative elements; and displaying an image of the spatial layout of tiles of representative elements. Each tile includes atomic attributes of representative elements. The invention also relates to an apparatus for displaying large amounts of information. The apparatus includes a tiler forming a spatial layout of tiles, each corresponding to a representative reference element; a comparator mapping observed elements onto said spatial layout of tiles of representative reference elements; an assigner assigning a respective value to each respective tile of said spatial layout of representative reference elements; and a display displaying an image of the spatial layout of tiles of representative reference elements

    High-Betweenness Proteins in the Yeast Protein Interaction Network

    Get PDF
    Structural features found in biomolecular networks that are absent in random networks produced by simple algorithms can provide insight into the function and evolution of cell regulatory networks. Here we analyze “betweenness” of network nodes, a graph theoretical centrality measure, in the yeast protein interaction network. Proteins that have high betweenness, but low connectivity (degree), were found to be abundant in the yeast proteome. This finding is not explained by algorithms proposed to explain the scale-free property of protein interaction networks, where low-connectivity proteins also have low betweenness. These data suggest the existence of some modular organization of the network, and that the high-betweenness, low-connectivity proteins may act as important links between these modules. We found that proteins with high betweenness are more likely to be essential and that evolutionary age of proteins is positively correlated with betweenness. By comparing different models of genome evolution that generate scale-free networks, we show that rewiring of interactions via mutation is an important factor in the production of such proteins. The evolutionary and functional significance of these observations are discussed

    Method and system for measurement of mechanical properties of molecules and cells

    Get PDF
    Mechanical stresses and deformations are applied directly to cell surface receptors or molecules and measured using a system including a magnetic twisting device in combination with ferromagnetic microbeads coated with ligands for integrins or any other surface receptors. The system can be used diagnostically to characterize cells and molecules and to determine the effect of transformation and compounds, including drugs, on the cells and molecules. The system can also be used to induce cells to grow or alter production of molecules by the cells

    Towards a Holistic, Yet Gene-Centered Analysis of Gene Expression Profiles: A Case Study of Human Lung Cancers

    Get PDF
    Genome-wide gene expression profile studies encompass increasingly large number of samples, posing a challenge to their presentation and interpretation without losing the notion that each transcriptome constitutes a complex biological entity. Much like pathologists who visually analyze information-rich histological sections as a whole, we propose here an integrative approach. We use a self-organizing maps -based software, the gene expression dynamics inspector (GEDI) to analyze gene expression profiles of various lung tumors. GEDI allows the comparison of tumor profiles based on direct visual detection of transcriptome patterns. Such intuitive “gestalt” perception promotes the discovery of interesting relationships in the absence of an existing hypothesis. We uncovered qualitative relationships between squamous cell tumors, small-cell tumors, and carcinoid tumor that would have escaped existing algorithmic classifications. These results suggest that GEDI may be a valuable explorative tool that combines global and gene-centered analyses of molecular profiles from large-scale microarray experiments
    corecore