1,678 research outputs found
Towards Optimal Degree-distributions for Left-perfect Matchings in Random Bipartite Graphs
Consider a random bipartite multigraph with left nodes and right nodes. Each left node has random right
neighbors. The average left degree is fixed, . We ask
whether for the probability that has a left-perfect matching it is
advantageous not to fix for each left node but rather choose it at
random according to some (cleverly chosen) distribution. We show the following,
provided that the degrees of the left nodes are independent: If is an
integer then it is optimal to use a fixed degree of for all left
nodes. If is non-integral then an optimal degree-distribution has the
property that each left node has two possible degrees, \floor{\Delta} and
\ceil{\Delta}, with probability and , respectively, where
is from the closed interval and the average over all equals
\ceil{\Delta}-\Delta. Furthermore, if and is
constant, then each distribution of the left degrees that meets the conditions
above determines the same threshold that has the following
property as goes to infinity: If then there exists a
left-perfect matching with high probability. If then there
exists no left-perfect matching with high probability. The threshold
is the same as the known threshold for offline -ary cuckoo
hashing for integral or non-integral
«Beruflich weiterkommen und sich weiterentwickeln»
Weiterbildung ist ein wichtiger Pfeiler der Berner Fachhochschule BFH. Und â Zufall oder nicht â die Zahlen des 25-Jahr-JubilĂ€ums spiegeln sich auch im Bereich Weiterbildung des Departements Architektur, Holz und Bau BFH-AHB wider: Das Angebot umfasst 5 MAS sowie 25 CAS, und der Umsatz betrug im letzten Jahr just 2,5 Millionen Franken. Ein GesprĂ€ch ĂŒber Trends, Misserfolge und Dauerbrenner im Angebot
«Zusammenarbeit ĂŒber Grenzen hinweg war mir ein Anliegen»
Zuerst unterrichtete er an der Ingenieurschule Biel deutsche Sprache, dann wurde er Dozent fĂŒr Kommunikation: Mit der GrĂŒndung der Berner Fachhochschule BFH verĂ€nderte sich auch der Aufgabenbereich von Diego Jannuzzo, der im Februar pensioniert wurde. Ein RĂŒckblick
The Hall algebra and the composition monoid
Let Q be a quiver. M. Reineke and A. Hubery investigated the connection
between the composition monoid, as introduced by M. Reineke, and the generic
composition algebra, as introduced by C. M. Ringel, specialised at q=0. In this
thesis we continue their work. We show that if Q is a Dynkin quiver or an
oriented cycle, then the composition algebra at q=0 is isomorphic to the monoid
algebra of the composition monoid. Moreover, if Q is an acyclic, extended
Dynkin quiver, we show that there exists an epimorphism from the composition
algebra at q=0 to the monoid algebra of the composition monoid, and we describe
its non-trivial kernel.
Our main tool is a geometric version of BGP reflection functors on quiver
Grassmannians and quiver flags, that is varieties consisting of filtrations of
a fixed representation by subrepresentations of fixed dimension vectors. These
functors enable us to calculate various structure constants of the composition
algebra.
Moreover, we investigate geometric properties of quiver flags and quiver
Grassmannians, and show that under certain conditions, quiver flags are
irreducible and smooth. If, in addition, we have a counting polynomial, these
properties imply the positivity of the Euler characteristic of the quiver flag.Comment: 111 pages, doctoral thesis University of Paderborn (2009
- âŠ