6 research outputs found

    Acute oxidant damage promoted on cancer cells by amitriptyline in comparison with some common chemotherapeutic drugs

    Get PDF
    Oxidative therapy is a relatively new anticancer strategy based on the induction of high levels of oxidative stress, achieved by increasing intracellular reactive oxygen species (ROS) and/or by depleting the protective antioxidant machinery of tumor cells. We focused our investigations on the antitumoral potential of amitriptyline in three human tumor cell lines: H460 (lung cancer), HeLa (cervical cancer), and HepG2 (hepatoma); comparing the cytotoxic effect of amitriptyline with three commonly used chemotherapeutic drugs: camptothecin, doxorubicin, and methotrexate. We evaluated apoptosis, ROS production, mitochondrial mass and activity, and antioxidant defenses of tumor cells. Our results show that amitriptyline produces the highest cellular damage, inducing high levels of ROS followed by irreversible serious mitochondrial damage. Interestingly, an unexpected decrease in antioxidant machinery was observed only for amitriptyline. In conclusion, based on the capacity of generating ROS and inhibiting antioxidants in tumor cells, amitriptyline emerges as a promising new drug to be tested for anticancer therapy

    Inmunohistochemical Profile of Solid Cell Nest of Thyroid Gland

    Get PDF
    It is widely held that solid cell nests (SCN) of the thyroid are ultimobranchial body remnants. SCNs are composed of main cells and C cells. It has been suggested that main cells might be pluripotent cells contributing to the histogenesis of C cells and follicular cells, as well as to the formation of certain thyroid tumors. The present study sought to analyze the immunohistochemical profile of SCN and to investigate the potential stem cell role of SCN main cells. Tissue sections from ten cases of nodular hyperplasia (non-tumor goiter) with SCNs were retrieved from the files of the Hospital Infanta Luisa (Seville, Spain). Parathormone (PTH), calcitonin (CT), thyroglobulin (TG), thyroid transcription factor (TTF-1), galectin 3 (GAL3), cytokeratin 19 (CK 19), p63, bcl-2, OCT4, and SALL4 expression were evaluated by immunohistochemistry. Patient clinical data were collected, and tissue sections were stained with hematoxylin–eosin for histological examination. Most cells stained negative for PTH, CT, TG, and TTF-1. Some cells staining positive for TTF-1 and CT required discussion. However, bcl-2, p63, GAL3, and CK 19 protein expression was detected in main cells. OCT4 protein expression was detected in only two cases, and SALL4 expression in none. Positive staining for bcl-2 and p63, and negative staining for PTH, CT, and TG in SCN main cells are both consistent with the widely accepted minimalist definition of stem cells, thus supporting the hypothesis that they may play a stem cell role in the thyroid gland, although further research will be required into stem cell markers. Furthermore, p63 and GAL-3 staining provides a much more sensitive means of detecting SCNs than staining for carcinoembryonic antigen, calcitonin, or other markers; this may help to distinguish SCNs from their mimics

    Anti-Inflammatory Effects of Rosmarinic Acid-Loaded Nanovesicles in Acute Colitis through Modulation of NLRP3 Inflammasome

    No full text
    Ulcerative colitis (UC), one of the two main types of inflammatory bowel disease, has no effective treatment. Rosmarinic acid (RA) is a polyphenol that, when administered orally, is metabolised in the small intestine, compromising its beneficial effects. We used chitosan/nutriose-coated niosomes loaded with RA to protect RA from gastric degradation and target the colon and evaluated their effect on acute colitis induced by 4% dextran sodium sulphate (DSS) for seven days in mice. RA-loaded nanovesicles (5, 10 and 20 mg/kg) or free RA (20 mg/kg) were orally administered from three days prior to colitis induction and during days 1, 3, 5 and 7 of DSS administration. RA-loaded nanovesicles improved body weight loss and disease activity index as well as increased mucus production and decreased myeloperoxidase activity and TNF-α production. Moreover, RA-loaded nanovesicles downregulated protein expression of inflammasome components such as NLR family pyrin domain-containing 3 (NLRP3), adaptor protein (ASC) and caspase-1, and the consequent reduction of IL-1β levels. Furthermore, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) protein expression increased after the RA-loaded nanovesicles treatment However, these mechanistic changes were not detected with the RA-free treatment. Our findings suggest that the use of chitosan/nutriose-coated niosomes to increase RA local bioavailability could be a promising nutraceutical strategy for oral colon-targeted UC therapy

    Amitriptyline down-regulates coenzyme Q10 biosynthesis in lung cancer cells

    Get PDF
    Amitriptyline, a tricyclic antidepressant, has been proposed as an antitumoral drug in oxidative therapy. Its pro-apoptotic effects, mediated by high reactive oxygen species generation, have been already described. In this study we analysed the effect of amitriptyline on the biosynthesis of coenzyme Q (CoQ), an essential component for electron transport and a potent membrane antioxidant involved in redox signaling. We treated H460 cells, a non-small-cell lung cancer cell line, with amitriptyline and we analysed CoQ levels by HPLC and CoQ biosynthesis rate, as well as the enzymes involved in CoQ biosynthesis by real-time PCR and Western blot. Amitriptyline treatment induced a dose-dependent decrease in CoQ levels in tumor cells. CoQ decreased levels were associated with down-regulation of the expression of COQ4 gene, as well as decreased Coq4 and Coq6 protein levels. Our findings suggest that the effect of amitriptyline on CoQ biosynthesis highlights the potential of this drug for antitumoral oxidative therapy.This work has been supported by the Spanish research association FOICAM (Asociación para el Fomento de la Investigación en Cáncer y Mitocondriopatías), FIS PI10/00543 grant, Fondo Europeo de Desarrollo Regional (FEDER-Unión Europea), SAS 111242 grant (Servicio Andaluz de Salud-Junta de Andalucía), and Proyecto de Investigación de Excelencia (Junta de Andalucía CTS-5725).Peer Reviewe

    Amitriptyline induces coenzyme Q deficiency and oxidative damage in mouse lung and liver

    No full text
    6 páginas, 4 figuras.Amitriptyline is a tricyclic antidepressant commonly prescribed for the treatment of several neuropathic and inflammatory illnesses. We have already reported that amitriptyline has cytotoxic effect in human cell cultures, increasing oxidative stress, and decreasing growth rate and mitochondrial activity. Coenzyme Q (CoQ), a component of the respiratory chain and a potent antioxidant, has been proposed as a mitochondrial dysfunction marker. In the present work we evaluated lipid peroxidation, a consequence of oxidative stress, and CoQ level in liver, lung, kidney, brain, heart, skeletal muscle, and serum of mice treated with amitriptyline for two weeks. Lipid peroxidation was increased in a dose-dependent manner in all tissues analyzed. CoQ levels were increased in brain, heart, skeletal muscle, and serum, and strongly decreased in liver and lung. The relation between amitriptyline, CoQ, and oxidative stress is discussed.This work has been partially supported by IV Plan Propio de Investigación (University of Seville, ref. 2010/00000453).Peer reviewe

    Polyphenolic Maqui Extract as a Potential Nutraceutical to Treat TNBS-Induced Crohn' s Disease by the Regulation of Antioxidant and Anti-Inflammatory Pathways

    No full text
    Nutraceuticals include a wide variety of bioactive compounds, such as polyphenols, which have been highlighted for their remarkable health benefits. Specially, maqui berries have shown great antioxidant activity and anti-inflammatory effects on some inflammatory diseases. The objectives of the present study were to explore the therapeutic effects of maqui berries on acute-phase inflammation in Crohn’s disease. Balb/c mice were exposed to 2,4,6-trinitrobenzene sulfonic acid (TNBS) via intracolonic administration. Polyphenolic maqui extract (Ach) was administered orally daily for 4 days after TNBS induction (Curative Group), and for 7 days prior to the TNBS induction until sacrifice (Preventive Group). Our results showed that both preventive and curative Ach administration inhibited body weight loss and colon shortening, and attenuated the macroscopic and microscopic damage signs, as well as significantly reducing transmural inflammation and boosting the recovery of the mucosal architecture and its muco-secretory function. Additionally, Ach promotes macrophage polarization to the M2 phenotype and was capable of down-regulating significantly the expression of inflammatory proteins COX-2 and iNOS, and at the same time it regulates the antioxidant Nrf-2/HO-1 pathway. In conclusion, this is the first study in which it is demonstrated that the properties of Ach as could be used as a preventive and curative treatment in Crohn’s disease.Junta de Andalucía Sociedad Andaluza de Patología Digestiva 2016 (SAPD)’, Project 2018/00000802-CTS949España Ministerio de Educación y Ciencia project 2004/0000120
    corecore