38 research outputs found

    Comparison of standardised versus non-standardised methods for testing the in vitro potency of oxytetracycline against mannheimia haemolytica and pasteurella multocida

    Get PDF
    The in vitro pharmacodynamics of oxytetracycline was established for six isolates of each of the calf pneumonia pathogens Mannheimia haemolytica and Pasteurella multocida. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and bacterial time-kill curves were determined in two matrices, Mueller Hinton broth (MHB) and calf serum. Geometric mean MIC ratios, serum:MHB, were 25.2:1 (M. haemolytica) and 27.4:1 (P. multocida). The degree of binding of oxytetracycline to serum protein was 52.4%. Differences between serum and broth MICs could not be accounted for by oxytetracycline binding to serum protein. In vitro time-kill data suggested a co-dependent killing action of oxytetracycline. The in vitro data indicate inhibition of the killing action of oxytetracycline by serum factor(s). The nature of the inhibition requires further study. The outcome of treatment with oxytetracycline of respiratory tract infections in calves caused by M. haemolytica and P. multocida may not be related solely to a direct killing action

    Efficacy and safety of a novel oral isoxazoline, sarolaner (Simparicaâ„¢), for the treatment of sarcoptic mange in dogs

    Get PDF
    AbstractThe efficacy of the novel isoxazoline, sarolaner (Simparica™) was investigated in dogs with clinical signs consistent with sarcoptic mange and harbouring natural infestations of Sarcoptes scabiei. One placebo-controlled laboratory study and one multi-centred field study with a commercial comparator containing imidacloprid/moxidectin (Advocate® spot-on) were conducted. Oral or topical treatments were administered on Days 0 and 30. Up to 10 skin scrapings were taken for the assessment of S. scabiei infestations from each dog before treatment and on Days 14, 30, 44 and 60 in the laboratory study, and on Days 30 and 60 in the field study. In the laboratory study, efficacy was calculated based on the percent reduction of mean live mite counts compared to the placebo group. In the field study parasitological cure rate (% dogs free of mites) was determined and non-inferiority of sarolaner to the control product was assessed.In the laboratory study 44 mixed breed dogs were enrolled in four batches. Due to decreasing mite counts in the placebo treated dogs, immunosuppression with dexamethasone (0.4mg/kg three times per week for two weeks) was initiated in all dogs on study at that time (n=6) and those subsequently enrolled (n=14). In the field study, dogs were enrolled in a 2:1 ratio (sarolaner:comparator); 79 dogs were assessed for efficacy and safety, and an additional 45 dogs were assessed for safety only. There were no treatment related adverse events in either study.In the laboratory study, no mites were found on any sarolaner-treated dogs 14 days after the first treatment except for one dog that had a single mite on Day 44. In the field study, the parasitological cure rate was 88.7% and 100% in the sarolaner group and 84.6% and 96.0% in the imidacloprid/moxidectin group, on Days 30 and 60, respectively. Statistical analysis showed that sarolaner was non-inferior to imidacloprid/moxidectin at both time points. The clinical signs of sarcoptic mange, including hair loss, papules, pruritus, erythema, and scaling/crusting improved throughout the study.Sarolaner was safe, achieved 100% reduction in the numbers of S. scabiei detected and resulted in marked improvement of the clinical signs of sarcoptic mange in dogs following two monthly oral administrations

    Impact of growth matrix on pharmacodynamics of antimicrobial drugs for pig pneumonia pathogens

    Get PDF
    Abstract Background The most widely used measure of potency of antimicrobial drugs is Minimum Inhibitory Concentration (MIC). MIC is usually determined under standardised conditions in broths formulated to optimise bacterial growth on a species-by-species basis. This ensures comparability of data between laboratories. However, differences in values of MIC may arise between broths of differing chemical composition and for some drug classes major differences occur between broths and biological fluids such as serum and inflammatory exudate. Such differences must be taken into account, when breakpoint PK/PD indices are derived and used to predict dosages for clinical use. There is therefore interest in comparing MIC values in several broths and, in particular, in comparing broth values with those generated in serum. For the pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida, MICs were determined for three drugs, florfenicol, oxytetracycline and marbofloxacin, in five broths [Mueller Hinton Broth (MHB), cation-adjusted Mueller Hinton Broth (CAMHB), Columbia Broth supplemented with NAD (CB), Brain Heart Infusion Broth (BHI) and Tryptic Soy Broth (TSB)] and in pig serum. Results For each drug, similar MIC values were obtained in all broths, with one exception, marbofloxacin having similar MICs for three broths and 4–5-fold higher MICs for two broths. In contrast, for both organisms, quantitative differences between broth and pig serum MICs were obtained after correction of MICs for drug binding to serum protein (fu serum MIC). Potency was greater (fu serum MIC lower) in serum than in broths for marbofloxacin and florfenicol for both organisms. For oxytetracycline fu serum:broth MIC ratios were 6.30:1 (P. multocida) and 0.35:1 (A. pleuropneumoniae), so that potency of this drug was reduced for the former species and increased for the latter species. The chemical composition of pig serum and broths was compared; major matrix differences in 14 constituents did not account for MIC differences. Bacterial growth rates were compared in broths and pig serum in the absence of drugs; it was concluded that broth/serum MIC differences might be due to differing growth rates in some but not all instances. Conclusions For all organisms and all drugs investigated in this study, it is suggested that broth MICs should be adjusted by an appropriate scaling factor when used to determine pharmacokinetic/pharmacodynamic breakpoints for dosage prediction

    Pharmacokinetic/pharmacodynamic integration and modelling of florfenicol for the pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida

    Get PDF
    Pharmacokinetic-pharmacodynamic (PK/PD) integration and modelling were used to predict dosage schedules for florfenicol for two pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Pharmacokinetic data were pooled for two bioequivalent products, pioneer and generic formulations, administered intramuscularly to pigs at a dose rate of 15 mg/kg. Antibacterial potency was determined in vitro as minimum inhibitory concentration (MIC) and Mutant Prevention Concentration in broth and pig serum, for six isolates of each organism. For both organisms and for both serum and broth MICs, average concentration:MIC ratios over 48 h were similar and exceeded 2.5:1 and times greater than MIC exceeded 35 h. From in vitro time-kill curves, PK/PD modelling established serum breakpoint values for the index AUC24h/MIC for three levels of inhibition of growth, bacteriostasis and 3 and 4log10 reductions in bacterial count; means were 25.7, 40.2 and 47.0 h, respectively, for P. multocida and 24.6, 43.8 and 58.6 h for A. pleuropneumoniae. Using these PK and PD data, together with literature MIC distributions, doses for each pathogen were predicted for: (1) bacteriostatic and bactericidal levels of kill; (2) for 50 and 90% target attainment rates (TAR); and (3) for single dosing and daily dosing at steady state. Monte Carlo simulations for 90% TAR predicted single doses to achieve bacteriostatic and bactericidal actions over 48 h of 14.4 and 22.2 mg/kg (P. multocida) and 44.7 and 86.6 mg/kg (A. pleuropneumoniae). For daily doses at steady state, and 90% TAR bacteriostatic and bactericidal actions, dosages of 6.2 and 9.6 mg/kg (P. multocida) and 18.2 and 35.2 mg/kg (A. pleuropneumoniae) were required. PK/PD integration and modelling approaches to dose determination indicate the possibility of tailoring dose to a range of end-points
    corecore