284 research outputs found

    Walking at speeds close to the preferred transition speed as an approach to obesity treatment

    Get PDF
    Introduction. Increasing energy expenditure through certain exercise is an important component of effective interventions to enhance initial weight loss and prevent weight regain. Objective. The purpose of this study was to determine the effect of a 16-week weight loss exercise programme on morpho-functional changes in female adults and to examine the programme effects on two subpopulations with different levels of obesity. Methods. Fifty-six middle-aged women were divided into 2 groups according to their body mass index (BMI): 25-29.9 kg/m2 - overweight (OW) and ≥30 kg/m2 - obese (OB). The exercise protocol included a walking technique based on hip rotation at horizontal plane at speeds close to the preferred transition speed (PTS). At the initiation of the study and after 16 weeks of the programme, anthropometric, morphological and cardiovascular parameters of all subjects were assessed. The main effects of Group (OW and OB) and Time and the interaction effect of Group by Time were tested by time repeated measures General Linear Model (mixed between-within subjects ANOVA). Results. Mean weight loss during the programme was 10.3 kg and 20.1 kg in OW and OB, respectively. The average fat mass (FM) loss was 9.4 kg in OW and 16.9 kg in OB. The Mixed ANOVA revealed a significant Group by Time interaction effects for waist circumference, body weight, body water, fat free mass, FM, %FM and BMI (p<0.05). Conclusion. The applied exercise protocol has proved as beneficial in the treatment of obesity, since it resulted in a significant weight loss and body composition changes. The reduction in body weight was achieved mainly on account of the loss of fat mass. © 2012. Centre for Evaluation in Education and Science

    Discordant Growth of Monozygotic Twins Starts at the Blastocyst Stage: A Case Study

    Get PDF
    SummaryDiscordant growth is a common complication of monochorionic/diamniotic pregnancies; in approximately 50% of cases, the cause is unknown. The case presented here suggests that discordant growth of monozygotic twins could start during preimplantation development. Two inner cell masses (ICMs) within the same blastocyst may originate in uneven splitting of a single “parental” ICM, or the two ICMs may be formed independently de novo. We studied the transcriptomes of two morphologically distinct ICMs within a single blastocyst using high-resolution RNA sequencing. The data indicated that the two ICM were at different stages of development; one was in the earliest stages of lineage commitment, while the other had already differentiated into epiblast and primitive endoderm. IGF1-mediated signaling is likely to play a key role in ICM growth and to be the major driver behind these differences

    Generation of KCL037 clinical grade human embryonic stem cell line

    Get PDF
    AbstractThe KCL037 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards. Pluripotent state and differentiation potential were confirmed by in vitro assays

    Generation of KCL032 clinical grade human embryonic stem cell line

    Get PDF
    AbstractThe KCL032 human embryonic stem cell line was derived from a normal healthy blastocyst donated for research. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment and under current Good Manufacturing Practice (cGMP) standards. Pluripotent state and differentiation potential were confirmed by in vitro assays

    Generation of KCL026 research grade human embryonic stem cell line carrying a mutation in SMN1 gene

    Get PDF
    The KCL026 human embryonic stem cell line was derived from an embryo donated for research that carried a mutation in the SMN1 gene encoding survival of motor neuron 1, telomeric (exons 7 and 8 deletion). Mutations in this gene are associated with spinal muscular atrophy. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays

    Generation of KCL026 research grade human embryonic stem cell line carrying a mutation in SMN1 gene

    Get PDF
    AbstractThe KCL026 human embryonic stem cell line was derived from an embryo donated for research that carried a mutation in the SMN1 gene encoding survival of motor neuron 1, telomeric (exons 7 and 8 deletion). Mutations in this gene are associated with spinal muscular atrophy. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays

    Generation of KCL036 research grade human embryonic stem cell line carrying a mutation in the HTT gene

    Get PDF
    The KCL036 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the HTT gene encoding huntingtin (38 trinucleotide repeats; 14 for the normal allele). The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro and in vivo assays

    FAK nuclear export signal sequences

    Get PDF
    AbstractUbiquitously expressed focal adhesion kinase (FAK), a critical component in transducing signals from sites of cell contacts with extracellular matrix, was named after its typical localization in focal adhesions. A nuclear localization of FAK has been also reported and its scaffolding role in nucleus and requirement for p53 ubiquitination were only recently described. Whereas FAK nuclear localization signal (NLS) was found in F2 lobe of FERM domain, nuclear export signal (NES) sequences have not been yet determined. Here we demonstrate that FAK has two NES sequences, NES1 in F1 lobe of FERM domain and NES2 in kinase domain. Although, both NES1 and NES2 are evolutionary conserved, and present as well in FAK-related protein kinase Pyk2, only NES2 demonstrates full biological nuclear export activity

    FAK induces expression of Prx1 to promote tenascin-C–dependent fibroblast migration

    Get PDF
    Fibroblast migration depends, in part, on activation of FAK and cellular interactions with tenascin-C (TN-C). Consistent with the idea that FAK regulates TN-C, migration-defective FAK-null cells expressed reduced levels of TN-C. Furthermore, expression of FAK in FAK-null fibroblasts induced TN-C, whereas inhibition of FAK activity in FAK–wild-type cells had the opposite effect. Paired-related homeobox 1 (Prx1) encodes a homeobox transcription factor that induces TN-C by interacting with a binding site within the TN-C promoter, and it also promotes fibroblast migration. Therefore, we hypothesized that FAK regulates TN-C by controlling the DNA-binding activity of Prx1 and/or by inducing Prx1 expression. Prx1–homeodomain binding site complex formation observed with FAK–wild-type fibroblasts failed to occur in FAK-null fibroblasts, yet expression of Prx1 in these cells induced TN-C promoter activity. Thus, FAK is not essential for Prx1 DNA-binding activity. However, activated FAK was essential for Prx1 expression. Functionally, Prx1 expression in FAK-null fibroblasts restored their ability to migrate toward fibronectin, in a manner that depends on TN-C. These results appear to be relevant in vivo because Prx1 and TN-C expression levels were reduced in FAK-null embryos. This paper suggests a model whereby FAK induces Prx1, and subsequently the formation of a TN-C–enriched ECM that contributes to fibroblast migration
    corecore