11 research outputs found

    Nasal cytology in children: recent advances

    Get PDF
    Nasal cytology is a very useful diagnostic tool in nasal disorders, being able to detect both the cellular modifications of the nasal epithelium caused by either allergen exposure or irritative stimuli (that may be physical or chemical, acute or chronic), or inflammation. Over these past few years, nasal cytology has allowed to identify new disorders, such as the non-allergic rhinitis with eosinophils (NARES), the non-allergic rhinitis with mast cells (NARMA), the non-allergic rhinitis with neutrophils (NARNE), and the non-allergic rhinitis with eosinophils and mast cells (NARESMA). The rhinocytogram is actually able to distinguish the different forms of allergic rhinitis and to suggest the appropriate treatment, such as antinflammatory drugs or allergen immunotherapy. The technique is easy to perform and nasal cytology is therefore particularly suitable even for children. Such a consideration suggests the utility of a systematic use of nasal cytology in the diagnostic work-up of nasal disorders in children, in order to reach a proper defined diagnosis and to set a rational therapeutic approach: in facts, these two elements are fundamental in order to prevent from complications and to improve the patient’s quality of life

    Nasal cytology in children: recent advances

    No full text
    Abstract Nasal cytology is a very useful diagnostic tool in nasal disorders, being able to detect both the cellular modifications of the nasal epithelium caused by either allergen exposure or irritative stimuli (that may be physical or chemical, acute or chronic), or inflammation. Over these past few years, nasal cytology has allowed to identify new disorders, such as the non-allergic rhinitis with eosinophils (NARES), the non-allergic rhinitis with mast cells (NARMA), the non-allergic rhinitis with neutrophils (NARNE), and the non-allergic rhinitis with eosinophils and mast cells (NARESMA). The rhinocytogram is actually able to distinguish the different forms of allergic rhinitis and to suggest the appropriate treatment, such as antinflammatory drugs or allergen immunotherapy. The technique is easy to perform and nasal cytology is therefore particularly suitable even for children. Such a consideration suggests the utility of a systematic use of nasal cytology in the diagnostic work-up of nasal disorders in children, in order to reach a proper defined diagnosis and to set a rational therapeutic approach: in facts, these two elements are fundamental in order to prevent from complications and to improve the patient’s quality of life.</p

    Specific IgE response to different grass pollen allergen components in children undergoing sublingual immunotherapy

    No full text
    <p>Abstract</p> <p>Background</p> <p>Grass pollen is a major cause of respiratory allergy worldwide and contain a number of allergens, some of theme (Phl p 1, Phl p 2, Phl p 5, and Phl 6 from <it>Phleum pratense</it>, and their homologous in other grasses) are known as major allergens. The administration of grass pollen extracts by immunotherapy generally induces an initial rise in specific immunoglobulin E (sIgE) production followed by a progressive decline during the treatment. Some studies reported that immunotherapy is able to induce a <it>de novo</it> sensitisation to allergen component previously unrecognized.</p> <p>Methods</p> <p>We investigated in 30 children (19 males and 11 females, mean age 11.3 years), 19 treated with sublingual immunotherapy (SLIT) by a 5-grass extract and 11 untreated, the sIgE and sIgG4 response to the different allergen components.</p> <p>Results</p> <p>Significant increases (p < 0.001) were detected for Phl p 1, Phl p 2, Phl p 5, and Phl p 6, while sIgE levels induced in response to Phl p 7 and Phl p 12 were low or absent at baseline and unchanged following SLIT treatment; no new sensitisation was detected. As to IgG4, significant increases were found for Phl p2 and Phl p 5, while the increase for Phl p 12 was not significant. In the control group, no significant increase in sIgE for any single allergen component was found.</p> <p>Conclusions</p> <p>These findings confirm that the initial phase of SLIT with a grass pollen extract enhances the sIgE synthesis and show that the sIgE response concerns the same allergen components which induce IgE reactivity during natural exposure.</p
    corecore