65 research outputs found

    Hopf Map and Quantization on Sphere

    Get PDF
    Quantization of a system constrained to move on a sphere is considered by taking a square root of the ``on sphere condition''. We arrive at the fibre bundle structure of the Hopf map in the cases of S2S^{2} and S4S^{4}. This leads to more geometrical understanding of monopole and instanton gauge structures that emerge in the course of quantization.Comment: 9 pages, LaTeX2e, uses amsmath.st

    Inequivalent Quantization in the Skyrme Model

    Get PDF
    Quantum mechanics on manifolds is not unique and in general infinite number of inequivalent quantizations can be considered. They are specified by the induced spin and the induced gauge structures on the manifold. The configuration space of collective mode in the Skyrme model can be identified with S3S^{3} and thus the quantization is not unique. This leads to the different predictions for the physical observables.Comment: 16 pages, LaTeX2

    Berry Connections and Induced Gauge Fields in Quantum Mechanics on Sphere

    Get PDF
    Quantum mechanics on sphere SnS^{n} is studied from the viewpoint that the Berry's connection has to appear as a topological term in the effective action. Furthermore we show that this term is the Chern-Simons term of gauge variables that correspond to the extra degrees of freedom of the enlarged space.Comment: 12 pages, LaTeX2

    On the symmetries of BF models and their relation with gravity

    Get PDF
    The perturbative finiteness of various topological models (e.g. BF models) has its origin in an extra symmetry of the gauge-fixed action, the so-called vector supersymmetry. Since an invariance of this type also exists for gravity and since gravity is closely related to certain BF models, vector supersymmetry should also be useful for tackling various aspects of quantum gravity. With this motivation and goal in mind, we first extend vector supersymmetry of BF models to generic manifolds by incorporating it into the BRST symmetry within the Batalin-Vilkovisky framework. Thereafter, we address the relationship between gravity and BF models, in particular for three-dimensional space-time.Comment: 29 page

    Solitons of Sigma Model on Noncommutative Space as Solitons of Electron System

    Full text link
    We study the relationship of soliton solutions for electron system with those of the sigma model on the noncommutative space, working directly in the operator formalism. We find that some soliton solutions of the sigma model are also the solitons of the electron system and are classified by the same topological numbers.Comment: 12 pages, LaTeX2e, improvements to discussions, Version to be published in JHE

    Lost equivalence of nonlinear sigma and CP1CP^{1} models on noncommutative space

    Full text link
    We show that the equivalence of nonlinear sigma and CP1CP^{1} models which is valid on the commutative space is broken on the noncommutative space. This conclusion is arrived at through investigation of new BPS solitons that do not exist in the commutative limit.Comment: 17 pages, LaTeX2

    New BPS Solitons in 2+1 Dimensional Noncommutative CP^1 Model

    Full text link
    Investigating the solitons in the non-commutative CP1CP^{1} model, we have found a new set of BPS solitons which does not have counterparts in the commutative model.Comment: 8 pages, LaTeX2e, references added, improvements to discussions, Version to be published in JHE

    Symmetries of topological field theories in the BV-framework

    Get PDF
    Topological field theories of Schwarz-type generally admit symmetries whose algebra does not close off-shell, e.g. the basic symmetries of BF models or vector supersymmetry of the gauge-fixed action for Chern-Simons theory (this symmetry being at the origin of the perturbative finiteness of the theory). We present a detailed discussion of all these symmetries within the algebraic approach to the Batalin-Vilkovisky formalism. Moreover, we discuss the general algebraic construction of topological models of both Schwarz- and Witten-type.Comment: 30 page

    A Superspace Formulation of The BV Action for Higher Derivative Theories

    Full text link
    We first analyze the anti-BRST and double BRST structures of a certain higher derivative theory that has been known to possess BRST symmetry associated with its higher derivative structure. We discuss the invariance of this theory under shift symmetry in the Batalin Vilkovisky (BV) formalism. We show that the action for this theory can be written in a manifestly extended BRST invariant manner in superspace formalism using one Grassmann coordinate. It can also be written in a manifestly extended BRST invariant manner and on-shell manifestly extended anti-BRST invariant manner in superspace formalism using two Grassmann coordinates.Comment: accepted for publication in EPJ
    • …
    corecore