159 research outputs found

    Neuroprotective effect of a new DJ-1-binding compound against neurodegeneration in Parkinson's disease and stroke model rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parkinson's disease (PD) and cerebral ischemia are chronic and acute neurodegenerative diseases, respectively, and onsets of these diseases are thought to be induced at least by oxidative stress. PD is caused by decreased dopamine levels in the substantia nigra and striatum, and cerebral ischemia occurs as a result of local reduction or arrest of blood supply. Although a precursor of dopamine and inhibitors of dopamine degradation have been used for PD therapy and an anti-oxidant have been used for cerebral ischemia therapy, cell death progresses during treatment. Reagents that prevent oxidative stress-induced cell death are therefore necessary for fundamental therapies for PD and cerebral ischemia. DJ-1, a causative gene product of a familial form of PD, PARK7, plays roles in transcriptional regulation and anti-oxidative stress, and loss of its function is thought to result in the onset of PD. Superfluous oxidation of cysteine at amino acid 106 (C106) of DJ-1 renders DJ-1 inactive, and such oxidized DJ-1 has been observed in patients with the sporadic form of PD.</p> <p>Results</p> <p>In this study, a compound, comp-23, that binds to DJ-1 was isolated by virtual screening. Comp-23 prevented oxidative stress-induced death of SH-SY5Y cells and primary neuronal cells of the ventral mesencephalon but not that of DJ-1-knockdown SH-SY5Y cells, indicating that the effect of the compound is specific to DJ-1. Comp-23 inhibited the production of reactive oxygen species (ROS) induced by oxidative stress and prevented excess oxidation of DJ-1. Furthermore, comp-23 prevented dopaminergic cell death in the substantia nigra and restored movement abnormality in 6-hydroxyldopamine-injected and rotenone-treated PD model rats and mice. Comp-23 also reduced infarct size of cerebral ischemia in rats that had been induced by middle cerebral artery occlusion. Protective activity of comp-23 seemed to be stronger than that of previously identified compound B.</p> <p>Conclusions</p> <p>The results indicate that comp-23 exerts a neuroprotective effect by reducing ROS-mediated neuronal injury, suggesting that comp-23 becomes a lead compound for PD and ischemic neurodegeneration therapies.</p

    A study of transileocolic vein obliteration (TIO) for gastric varices

    Get PDF
    Seven cases of giant gastric varices were treated using TIO combined with balloon occlusion of the gastro-renal shunt, for the purpose of reviewing the significance of TIO in the treatment of gastric varices. In 6 of the 7 cases, giant varices were cured completely. In the unsuccessful case, it was a giant varix (the minimum diameter was 25 mm or more) which had been failed to be treated by the TIO. In 3 of the 7 cases, the varices on the gastric fornix had ruptured ; therefore, emergency TIO was undertaken and resulted in successful hemostasis and disappearance of the varices. After treatment using this technique, one case developed esophageal varices, and two patients showed a reduction in esophageal varices. In case where gastric varices had been accompanied by RC sign-positive esophageal varices, favorable results were obtained with obliteration of the gastro-renal shunt was combined with compression of the esophagus which had served as another shunt in these cases. After TIO, hepatic function remained unchanged or improved slightly. No case showed exacerbation of hepatic function. For massive gastric varices with an inside diameter of up to 2 cm, transileocolic vein obliteration (TIO) combined with balloon occlusion of the gastro-renal shunt, which occludes the shunt in an anterograde manner, secures the occlusion of the shunt with no complications. This technique seems to be an effective therapy for gastric varices

    C9orf72-derived arginine-rich poly-dipeptides impede phase modifiers

    Get PDF
    Nuclear import receptors (NIRs) not only transport RNA-binding proteins (RBPs) but also modify phase transitions of RBPs by recognizing nuclear localization signals (NLSs). Toxic arginine-rich poly-dipeptides from C9orf72 interact with NIRs and cause nucleocytoplasmic transport deficit. However, the molecular basis for the toxicity of arginine-rich poly-dipeptides toward NIRs function as phase modifiers of RBPs remains unidentified. Here we show that arginine-rich poly-dipeptides impede the ability of NIRs to modify phase transitions of RBPs. Isothermal titration calorimetry and size-exclusion chromatography revealed that proline:arginine (PR) poly-dipeptides tightly bind karyopherin-β2 (Kapβ2) at 1:1 ratio. The nuclear magnetic resonances of Kapβ2 perturbed by PR poly-dipeptides partially overlapped with those perturbed by the designed NLS peptide, suggesting that PR poly-dipeptides target the NLS binding site of Kapβ2. The findings offer mechanistic insights into how phase transitions of RBPs are disabled in C9orf72-related neurodegeneration

    Transcriptional Activation of Low-Density Lipoprotein Receptor Gene by DJ-1 and Effect of DJ-1 on Cholesterol Homeostasis

    Get PDF
    DJ-1 is a novel oncogene and also causative gene for familial Parkinson’s disease park7. DJ-1 has multiple functions that include transcriptional regulation, anti-oxidative reaction and chaperone and mitochondrial regulation. For transcriptional regulation, DJ-1 acts as a coactivator that binds to various transcription factors, resulting in stimulation or repression of the expression of their target genes. In this study, we found the low-density lipoprotein receptor (LDLR) gene is a transcriptional target gene for DJ-1. Reduced expression of LDLR mRNA and protein was observed in DJ-1-knockdown cells and DJ-1-knockout mice and this occurred at the transcription level. Reporter gene assays using various deletion and point mutations of the LDLR promoter showed that DJ-1 stimulated promoter activity by binding to the sterol regulatory element (SRE) with sterol regulatory element binding protein (SREBP) and that stimulating activity of DJ-1 toward LDLR promoter activity was enhanced by oxidation of DJ-1. Chromatin immunoprecipitation, gel-mobility shift and co-immunoprecipitation assays showed that DJ-1 made a complex with SREBP on the SRE. Furthermore, it was found that serum LDL cholesterol level was increased in DJ-1-knockout male, but not female, mice and that the increased serum LDL cholesterol level in DJ-1-knockout male mice was cancelled by administration with estrogen, suggesting that estrogen compensates the increased level of serum LDL cholesterol in DJ-1-knockout female mice. This is the first report that DJ-1 participates in metabolism of fatty acid synthesis through transcriptional regulation of the LDLR gene
    corecore