44 research outputs found

    Restriction Enzymes as a Target for DNA-Based Sensing and Structural Rearrangement

    No full text
    DNA nanostructures have been shown viable for the creation of complex logic-enabled sensing motifs. To date, most of these types of devices have been limited to the interaction with strictly DNA-type inputs. Restriction endonuclease represents a class of enzyme with endogenous specificity to DNA, and we hypothesize that these can be integrated with a DNA structure for use as inputs to trigger structural transformation and structural rearrangement. In this work, we reconfigured a three-arm DNA switch, which utilizes a cyclic FoĢˆrster resonance energy transfer interaction between three dyes to produce complex output for the detection of three separate input regions to respond to restriction endonucleases, and investigated the efficacy of the enzyme targets. We demonstrate the ability to use three enzymes in one switch with no nonspecific interaction between cleavage sites. Further, we show that the enzymatic digestion can be harnessed to expose an active toehold into the DNA structure, allowing for single-pot addition of a small oligo in solution

    Time-Gated DNA Photonic Wires with FoĢˆrster Resonance Energy Transfer Cascades Initiated by a Luminescent Terbium Donor

    No full text
    Functional DNA nanotechnology is a rapidly growing area of research with many prospective photonic applications, including roles as wires and switches, logic operators, and smart biological probes and delivery vectors. Photonic wire constructs are one such example and comprise a FoĢˆrster resonance energy transfer (FRET) cascade between fluorescent dyes arranged periodically along a DNA scaffold. To date, the majority of research on photonic wires has focused on setting new benchmarks for efficient energy transfer over more steps and across longer distances, using almost exclusively organic fluorescent dyes and strictly DNA structures. Here, we expand the range of materials utilized with DNA photonic wires by demonstrating the use of a luminescent terbium complex (Tb) as an initial donor for a four-step FRET cascade along a āˆ¼15 nm long DNA/locked nucleic acid (LNA) photonic wire. The inclusion of LNA nucleotides increases the thermal stability of the photonic wires while the Tb affords time-gated emission measurements and other optical benefits. Time-gating minimizes unwanted background emission, whether from direct excitation of fluorescent dyes along the length of the photonic wire, from excess dye-labeled DNA strands in the sample, or from a biological sample matrix. Observed efficiencies for Tb-to-dye energy transfer are also closer to the predicted values than those for dye-to-dye energy transfer, and the Tb can be used as an initial FRET donor for a variety of next-in-line acceptors at different spectral positions. We show that the key to using the Tb as an effective initial donor is to optimally position the next-in-line acceptor dye in a so-called ā€œsweet spotā€ where the FRET efficiency is sufficiently high for practicality, but not so high as to suppress time-gated emission by shortening the Tb emission lifetime to within the instrument lag or delay time necessary for measurements. Overall, the initiation of a time-gated FRET cascade with a Tb donor is a very promising strategy for the design, characterization, and application of DNA-based photonic wires and other functional DNA nanostructures

    Time-Gated FRET and DNA-Based Photonic Molecular Logic Gates: AND, OR, NAND, and NOR

    No full text
    Molecular logic devices (MLDs) constructed from DNA are promising for applications in bioanalysis, computing, and other applications requiring Boolean logic. These MLDs accept oligonucleotide inputs and generate fluorescence output through changes in structure. Although fluorescent dyes are most common in MLD designs, nontraditional luminescent materials with unique optical properties can potentially enhance MLD capabilities. In this context, luminescent lanthanide complexes (LLCs) have been largely overlooked. Here, we demonstrate a set of high-contrast DNA photonic logic gates based on toehold-mediated strand displacement and time-gated FRET. The gates include NAND, NOR, OR, and AND designs that accept two unlabeled target oligonucleotide sequences as inputs. Bright ā€œtrueā€ output states utilize time-gated, FRET-sensitized emission from an Alexa Fluor 546 (A546) dye acceptor paired with a luminescent terbium cryptate (Tb) donor. Dark ā€œfalseā€ output states are generated through either displacement of the A546, or through competitive and sequential quenching of the Tb or A546 by a dark quencher. Time-gated FRET and the long luminescence lifetime and spectrally narrow emission lines of the Tb donor enable 4ā€“10-fold contrast between Boolean outputs, ā‰¤10% signal variation for a common output, multicolor implementation of two logic gates in parallel, and effective performance in buffer and serum. These metrics exceed those reported for many other logic gate designs with only fluorescent dyes and with other non-LLC materials. Preliminary three-input AND and NAND gates are also demonstrated. The powerful combination of an LLC FRET donor with DNA-based logic gates is anticipated to have many future applications in bioanalysis

    Peptides for Specifically Targeting Nanoparticles to Cellular Organelles: <i>Quo Vadis</i>?

    No full text
    ConspectusThe interfacing of nanomaterials and especially nanoparticles within all aspects of biological research continues to grow at a nearly unabated pace with projected applications focusing on powerful new tools for cellular labeling, imaging, and sensing, theranostic materials, and drug delivery. At the most fundamental level, many of these nanoparticles are meant to target not only very specific cell-types, regardless of whether they are in a culture, tissue, an animal model, or ultimately a patient, but also in many cases a specific subcellular organelle. During this process, these materials will undergo a complex journey that must first find the target cell of interest, then be taken up by those cells across the extracellular membrane, and ultimately localize to a desired subcellular organelle, which may include the nucleus, plasma membrane, endolysosomal system, mitochondria, cytosol, or endoplasmic reticulum. To accomplish these complex tasks in the correct sequence, researchers are increasingly interested in selecting for and exploiting targeting peptides that can impart the requisite capabilities to a given nanoparticle construct. There are also a number of related criteria that need careful consideration for this undertaking centering on the nature and properties of the peptide vector itself, the peptideā€“nanoparticle conjugate characteristics, and the target cell.Here, we highlight some important issues and key research areas related to this burgeoning field. We begin by providing a brief overview of some criteria for optimal attachment of peptides to nanoparticles, the predominant methods by which nanoparticles enter cells, and some of the peptide sequences that have been utilized to facilitate nanoparticle delivery to cells focusing on those that engender the initial targeting and uptake. Because almost all materials delivered to cells by peptides utilize the endosomal system of vesicular transport and in many cases remain sequestered within the vesicles, we critically evaluate the issue of endosomal escape in the context of some recently reported successes in this regard. Following from this, peptides that have been reported to deliver nanoparticles to specific subcellular compartments are examined with a focus on what they delivered and the putative mechanisms by which they were able to accomplish this. The last section focuses on two areas that are critical to realizing this overall approach in the long term. The first is how to select for peptidyl sequences capable of improved or more specific cellular or subcellular targeting based upon principles commonly associated with drug discovery. The second looks at what has been done to create modular peptides that incorporate multiple desirable functionalities within a single, contiguous sequence. This provides a viable alternative to either the almost insurmountable challenge of finding one sequence capable of all functions or, alternatively, attaching different peptides with different functionalities to the same nanoparticle in different ratios when trying to orchestrate their net effects. Finally, we conclude with a brief perspective on the future evolution and broader impact of this growing area of bionanoscience

    Time-Resolved Nucleic Acid Hybridization Beacons Utilizing Unimolecular and Toehold-Mediated Strand Displacement Designs

    No full text
    Nucleic acid hybridization probes are sought after for numerous assay and imaging applications. These probes are often limited by the properties of fluorescent dyes, prompting the development of new probes where dyes are paired with novel or nontraditional luminescent materials. Luminescent terbium complexes are an example of such a material, and these complexes offer several unique spectroscopic advantages. Here, we demonstrate two nonstem-loop designs for light-up nucleic acid hybridization beacons that utilize time-resolved FoĢˆrster resonance energy transfer (TR-FRET) between a luminescent Lumi4-Tb cryptate (Tb) donor and a fluorescent reporter dye, where time-resolved emission from the dye provides an analytical signal. Both designs are based on probe oligonucleotides that are labeled at their opposite termini with Tb and a fluorescent reporter dye. In one design, a probe is partially blocked with a quencher dye-labeled oligonucleotide, and target hybridization is signaled through toehold-mediated strand displacement and loss of a competitive FRET pathway. In the other design, the intrinsic folding properties of an unblocked probe are utilized in combination with a temporal mechanism for signaling target hybridization. This temporal mechanism is based on a recently elucidated ā€œsweet spotā€ for TR-FRET measurements and exploits distance control over FRET efficiencies to shift the Tb lifetime within or outside the time-gated detection window for measurements. Both the blocked and unblocked beacons offer nanomolar (femtomole) detection limits, response times on the order of minutes, multiplexing through the use of different reporter dyes, and detection in complex matrices such as serum and blood. The blocked beacons offer better mismatch selectivity, whereas the unblocked beacons are simpler in design. The temporal mechanism of signaling utilized with the unblocked beacons also plays a significant role with the blocked beacons and represents a new and effective strategy for developing FRET probes for bioassays

    Complex Logic Functions Implemented with Quantum Dot Bionanophotonic Circuits

    No full text
    We combine quantum dots (QDs) with long-lifetime terbium complexes (Tb), a near-IR Alexa Fluor dye (A647), and self-assembling peptides to demonstrate combinatorial and sequential bionanophotonic logic devices that function by time-gated FoĢˆrster resonance energy transfer (FRET). Upon excitation, the Tb-QD-A647 FRET-complex produces time-dependent photoluminescent signatures from multi-FRET pathways enabled by the capacitor-like behavior of the Tb. The unique photoluminescent signatures are manipulated by ratiometrically varying dye/Tb inputs and collection time. Fluorescent output is converted into Boolean logic states to create complex arithmetic circuits including the half-adder/half-subtractor, 2:1 multiplexer/1:2 demultiplexer, and a 3-digit, 16-combination keypad lock

    Multifunctional Liquid Crystal Nanoparticles for Intracellular Fluorescent Imaging and Drug Delivery

    No full text
    A continuing goal of nanoparticle (NP)-mediated drug delivery (NMDD) is the simultaneous improvement of drug efficacy coupled with tracking of the intracellular fate of the nanoparticle delivery vehicle and its drug cargo. Here, we present a robust multifunctional liquid crystal NP (LCNP)-based delivery system that affords facile intracellular fate tracking coupled with the efficient delivery and modulation of the anticancer therapeutic doxorubicin (Dox), employed here as a model drug cargo. The LCNPs consist of (1) a liquid crystal cross-linking agent, (2) a homologue of the organic chromophore perylene, and (3) a polymerizable surfactant containing a carboxylate headgroup. The NP core provides an environment to both incorporate fluorescent dye for spectrally tuned particle tracking and encapsulation of amphiphilic and/or hydrophobic agents for intracellular delivery. The carboxylate head groups enable conjugation to biologicals to facilitate the cellular uptake of the particles. Upon functionalization of the NPs with transferrin, we show the ability to differentially label the recycling endocytic pathway in HEK 293T/17 cells in a time-resolved manner with minimal cytotoxicity and with superior dye photostability compared to traditional organic fluorophores. Further, when passively loaded with Dox, the NPs mediate the rapid uptake and subsequent sustained release of Dox from within endocytic vesicles. We demonstrate the ability of the LCNPs to simultaneously serve as both an efficient delivery vehicle for Dox as well as a modulator of the drugā€™s cytotoxicity. Specifically, the delivery of Dox as a LCNP conjugate results in a āˆ¼40-fold improvement in its IC<sub>50</sub> compared to free Dox in solution. Cumulatively, our results demonstrate the utility of the LCNPs as an effective nanomaterial for simultaneous cellular imaging, tracking, and delivery of drug cargos

    Assembly of a Concentric FoĢˆrster Resonance Energy Transfer Relay on a Quantum Dot Scaffold: Characterization and Application to Multiplexed Protease Sensing

    No full text
    Semiconductor nanocrystals, or quantum dots (QDs), are one of the most widely utilized nanomaterials for biological applications. Their cumulative physicochemical and optical properties are both unique among nanomaterials and highly advantageous. In particular, FoĢˆrster resonance energy transfer (FRET) has been widely utilized as a spectroscopic tool with QDs, whether for characterizing QD bioconjugates as a ā€œmolecular rulerā€ or for modulating QD luminescence ā€œonā€ and ā€œoffā€ in biosensing configurations. Here, we investigate the assembly and utility of a new ā€œconcentricā€ FRET relay that comprises a central QD conjugated with multiple copies of two different peptides, each labeled with one of two fluorescent dyes, Alexa Fluor 555 (A555) or Alexa Fluor 647 (A647). Energy transfer occurs from the QD to the A555 (FRET<sub>1</sub>) then to the A647 (FRET<sub>2</sub>) and, to a lesser extent, directly from the QD to the A647 (FRET<sub>3</sub>). We show that such an arrangement can provide insight into the interfacial distribution of peptides assembled to the QD and can further be utilized for sensing proteolytic activity. In the latter, progress curves for digestion of the assembled peptides by two prototypical proteases, trypsin and chymotrypsin, were measured from the relative QD, A555 and A647 PL contributions, and used to extract Michaelisā€“Menten kinetic parameters. We further show that the concentric FRET relay, as a single nanoparticle vector, can track the tryptic activation of a proenzyme, chymotrypsinogen, to active chymotrypsin. The concentric FRET relay is thus a potentially powerful tool for the characterization of QD bioconjugates and multiplexed sensing of coupled biological activity

    Colloidal Stability of Gold Nanoparticles Coated with Multithiol-Poly(ethylene glycol) Ligands: Importance of Structural Constraints of the Sulfur Anchoring Groups

    No full text
    Gold nanoparticles (AuNPs) coated with a series of polyĀ­(ethylene glycol) (PEG) ligands appended with four different sulfur-based terminal anchoring groups (monothiol, flexible dithiol, constrained dithiol, disulfide) were prepared to explore how the structures of the sulfur-based anchoring groups affect the colloidal stability in aqueous media. The PEG-coated AuNPs were prepared by ligand exchange of citrate-stabilized AuNPs with each ligand. The colloidal stability of the AuNPs in different harsh environmental conditions was monitored visually and spectroscopically. The AuNPs coated with dithiol- or disulfide-PEG exhibited improved stability under high salt concentration and against ligand replacement competition with dithiothreitol compared with those coated with their monothiol counterpart. Importantly, the ligands with structurally constrained dithiol or disulfide showed better colloidal stability and higher sulfur coverage on the Au surface compared to the ligands with more flexible dithiol and monothiol. X-ray photoelectron spectroscopy also revealed that the disulfide-PEG ligand had the highest S coverage on Au surface on the Au surface among the ligands studied. This result was supported by energy minimization modeling studies: the structurally more constrained disulfide ligand has the shortest Sā€“S distance and could pack more densely on the Au surface. The experimental results indicate that the colloidal stability of the AuNPs is systematically enhanced in the following order: monothiol < flexible dithiol < constrained dithiol < disulfide. The present study indicates that the colloidal stability of thiolated ligand-functionalized AuNPs can be enhanced by (i) a multidentate chelating effect and (ii) use of the constrained and compact structure of the multidentate anchoring groups

    Multiplexed Tracking of Protease Activity Using a Single Color of Quantum Dot Vector and a Time-Gated FoĢˆrster Resonance Energy Transfer Relay

    No full text
    Semiconductor quantum dots (QDs) are attractive probes for optical sensing and imaging due to their unique photophysical attributes and nanoscale size. In particular, the development of assays and biosensors based on QDs and FoĢˆrster resonance energy transfer (FRET) continues to be a prominent focus of research. Here, we demonstrate the application of QDs as simultaneous donors and acceptors in a time-gated FRET relay for the multiplexed detection of protease activity. In contrast to the current state-of-the-art, which uses multiple colors of QDs, multiplexing was achieved using only a single color of QD. The other constituents of the FRET relay, a luminescent terbium complex and fluorescent dye, were assembled to QDs via peptides that were selected as substrates for the model proteases trypsin and chymotrypsin. Loss of prompt FRET between the QD and dye signaled the activity of chymotrypsin; loss of time-gated FRET between the terbium and QD signaled the activity of trypsin. We applied the FRET relay in a series of quantitative, real-time kinetic assays of increasing biochemical complexity, including multiplexed sensing, measuring inhibition in a multiplexed format, and tracking the proteolytic activation of an inactive pro-protease to its active form in a coupled, multienzyme system. These capabilities were derived from a ratiometric analysis of the two FRET pathways in the relay and permitted extraction of initial reaction rates, enzyme specificity constants, and apparent inhibition constants. This work adds to the growing body of research on multifunctional nanoparticles and introduces multiplexed sensing as a novel capability for a single nanoparticle vector. Furthermore, the ability to track both enzymes within a coupled biological system using one vector represents a significant advancement for nanoparticle-based biosensing. Prospective applications in biochemical research, applied diagnostics, and drug discovery are discussed
    corecore