89 research outputs found

    Mitochondria-targeted hydrogen sulfide donor AP39 improves neurological outcomes after cardiac arrest in mice

    Get PDF
    Copyright © 2015 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Nitric Oxide, Vol. 49, pp. 90–96 (2015), DOI:10.1016/j.niox.2015.05.001Aims Mitochondria-targeted hydrogen sulfide donor AP39, [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl)phenoxy)decyl) triphenylphosphonium bromide], exhibits cytoprotective effects against oxidative stress in vitro. We examined whether or not AP39 improves the neurological function and long term survival in mice subjected to cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Methods Adult C57BL/6 male mice were subjected to 8 min of CA and subsequent CPR. We examined the effects of AP39 (10, 100, 1000 nmol kg−1) or vehicle administered intravenously at 2 min before CPR (Experiment 1). Systemic oxidative stress levels, mitochondrial permeability transition, and histological brain injury were assessed. We also examined the effects of AP39 (10, 1000 nmol kg−1) or vehicle administered intravenously at 1 min after return of spontaneous circulation (ROSC) (Experiment 2). ROSC was defined as the return of sinus rhythm with a mean arterial pressure >40 mm Hg lasting at least 10 seconds. Results Vehicle treated mice subjected to CA/CPR had poor neurological function and 10-day survival rate (Experiment 1; 15%, Experiment 2; 23%). Administration of AP39 (100 and 1000 nmol kg−1) 2 min before CPR significantly improved the neurological function and 10-day survival rate (54% and 62%, respectively) after CA/CPR. Administration of AP39 before CPR attenuated mitochondrial permeability transition pore opening, reactive oxygen species generation, and neuronal degeneration after CA/CPR. Administration of AP39 1 min after ROSC at 10 nmol kg−1, but not at 1000 nmol kg−1, significantly improved the neurological function and 10-day survival rate (69%) after CA/CPR. Conclusion The current results suggest that administration of mitochondria-targeted sulfide donor AP39 at the time of CPR or after ROSC improves the neurological function and long term survival rates after CA/CPR by maintaining mitochondrial integrity and reducing oxidative stress.National Institutes of Healt

    Arginase impairs hypoxic pulmonary vasoconstriction in murine endotoxemia

    Get PDF
    Background: Hypoxic pulmonary vasoconstriction (HPV) optimizes the match between ventilation and perfusion in the lung by reducing blood flow to poorly ventilated regions. Sepsis and endotoxemia impair HPV. We previously showed that nitric oxide synthase 2 (NOS2) is required, but not sufficient, for the effect of endotoxin on HPV. The aim of the current study was to identify additional factors that might contribute to the impairment of HPV during endotoxemia. Methods: Gene expression profiling was determined using pulmonary tissues from NOS2-deficient (NOS2−/−) and wild-type mice subjected to endotoxin or saline challenge (control). HPV was accessed as the percentage increase in left pulmonary vascular resistance (LPVR) in response to left main bronchus occlusion (LMBO) in wild-type mice. Results: Among the 22,690 genes analyzed, endotoxin induced a greater than three-fold increase in 59 and 154 genes in the lungs of wild-type and NOS2−/− mice, respectively. Of all the genes induced by endotoxin in wild-type mice, arginase 1 (Arg1) showed the greatest increase (16.3-fold compared to saline treated wild-type mice). In contrast, endotoxin did not increase expression of Arg1 in NOS2−/− mice. There was no difference in the endotoxin-induced expression of Arg2 between wild-type and NOS2-deficient mice. We investigated the role of arginase in HPV by treating the mice with normal saline or the arginase inhibitor Nω-hydroxy-nor-L-arginine (norNOHA). In control mice (in the absence of endotoxin) treated with normal saline, HPV was intact as determined by profound LMBO-induced increase in LPVR (121 ± 22% from baseline). During endotoxemia and treatment with normal saline, HPV was impaired compared to normal saline treated control mice (33 ± 9% vs. 121 ± 22%, P < 0.05). HPV was restored in endotoxin-exposed mice after treatment with the arginase inhibitor norNOHA as shown by the comparison to endotoxemic mice treated with normal saline (113 ± 29% vs, 33 ± 9%, P < 0.05) and to control mice treated with normal saline (113 ± 29% vs, 121 ± 22%, P = 0.97). Conclusions: The results of this study suggest that endotoxemia induces Arg1 and that arginase contributes to the endotoxin-induced impairment of HPV in mice

    Inhaled nitric oxide improves transpulmonary blood flow and clinical outcomes after prolonged cardiac arrest: a large animal study

    Get PDF
    Introduction: The probability to achieve a return of spontaneous circulation (ROSC) after cardiac arrest can be improved by optimizing circulation during cardiopulomonary resuscitation using a percutaneous left ventricular assist device (iCPR). Inhaled nitric oxide may facilitate transpulmonary blood flow during iCPR and may therefore improve organ perfusion and outcome. Methods: Ventricular fibrillation was electrically induced in 20 anesthetized male pigs. Animals were left untreated for 10 minutes before iCPR was attempted. Subjects received either 20 ppm of inhaled nitric oxide (iNO, n = 10) or 0 ppm iNO (Control, n = 10), simultaneously started with iCPR until 5 hours following ROSC. Animals were weaned from the respirator and followed up for five days using overall performance categories (OPC) and a spatial memory task. On day six, all animals were anesthetized again, and brains were harvested for neurohistopathologic evaluation. Results: All animals in both groups achieved ROSC. Administration of iNO markedly increased iCPR flow during CPR (iNO: 1.81 ± 0.30 vs Control: 1.64 ± 0.51 L/min, p < 0.001), leading to significantly higher coronary perfusion pressure (CPP) during the 6 minutes of CPR (25 ± 13 vs 16 ± 6 mmHg, p = 0.002). iNO-treated animals showed significantly lower S-100 serum levels thirty minutes post ROSC (0.26 ± 0.09 vs 0.38 ± 0.15 ng/mL, p = 0.048), as well as lower blood glucose levels 120–360 minutes following ROSC. Lower S-100 serum levels were reflected by superior clinical outcome of iNO-treated animals as estimated with OPC (3 ± 2 vs. 5 ± 1, p = 0.036 on days 3 to 5). Three out of ten iNO-treated, but none of the Control animals were able to successfully participate in the spatial memory task. Neurohistopathological examination of vulnerable cerebral structures revealed a trend towards less cerebral lesions in neocortex, archicortex, and striatum in iNO-treated animals compared to Controls. Conclusions: In pigs resuscitated with mechanically-assisted CPR from prolonged cardiac arrest, the administration of 20 ppm iNO during and following iCPR improved transpulmonary blood flow, leading to improved clinical neurological outcomes

    Sulfide Catabolism Ameliorates Hypoxic Brain Injury

    Get PDF
    The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain’s sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury
    corecore