4,079 research outputs found
FRW barotropic zero modes: Dynamical systems observability
The dynamical systems observability properties of barotropic bosonic and
fermionic FRW cosmological oscillators are investigated. Nonlinear techniques
for dynamical analysis have been recently developed in many engineering areas
but their application has not been extended beyond their standard field. This
paper is a small contribution to an extension of this type of dynamical systems
analysis to FRW barotropic cosmologies. We find that determining the Hubble
parameter of barotropic FRW universes does not allow the observability, i.e.,
the determination of neither the barotropic FRW zero mode nor of its derivative
as dynamical cosmological states. Only knowing the latter ones correspond to a
rigorous dynamical observability in barotropic cosmologyComment: 10 pages, 0 figure
Time After Time: Notes on Delays In Spiking Neural P Systems
Spiking Neural P systems, SNP systems for short, are biologically inspired
computing devices based on how neurons perform computations. SNP systems use
only one type of symbol, the spike, in the computations. Information is encoded
in the time differences of spikes or the multiplicity of spikes produced at
certain times. SNP systems with delays (associated with rules) and those
without delays are two of several Turing complete SNP system variants in
literature. In this work we investigate how restricted forms of SNP systems
with delays can be simulated by SNP systems without delays. We show the
simulations for the following spike routing constructs: sequential, iteration,
join, and split.Comment: 11 pages, 9 figures, 4 lemmas, 1 theorem, preprint of Workshop on
Computation: Theory and Practice 2012 at DLSU, Manila together with UP
Diliman, DLSU, Tokyo Institute of Technology, and Osaka universit
Computing with cells: membrane systems - some complexity issues.
Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism
- …