57 research outputs found

    Candidemia in Intensive Care patients. Risk factors and mortality.

    Get PDF

    Heat Transfer and Thermal Energy Storage Enhancement by Foams and Nanoparticles

    Get PDF
    The use of innovative methods for the design of heating, cooling, and heat storage devices has been mainly oriented in the last decade toward the use of nanofluids, metal foams coupled with working fluids, or phase change materials (PCMs). A network of nine Italian universities achieved significant results and innovative ideas on these topics by developing a collaborative project in the last four years, where different approaches and investigation techniques were synergically employed. They evaluated the quantitative extent of the enhancement in the heat transfer and thermal performance of a heat exchanger or thermal energy storage system with the combined use of nanofluids, metal foams, and PCMs. The different facets of this broad research program are surveyed in this article. Special focus is given to the comparison between the mesoscopic to macroscopic modeling of heat transfer in metal foams and nanofluids, as well as to the experimental data collected and processed in the development of the research

    Deterrence in Cyberspace: An Interdisciplinary Review of the Empirical Literature

    Get PDF
    The popularity of the deterrence perspective across multiple scientific disciplines has sparked a lively debate regarding its relevance in influencing both offenders and targets in cyberspace. Unfortunately, due to the invisible borders between academic disciplines, most of the published literature on deterrence in cyberspace is confined within unique scientific disciplines. This chapter therefore provides an interdisciplinary review of the issue of deterrence in cyberspace. It begins with a short overview of the deterrence perspective, presenting the ongoing debates concerning the relevance of deterrence pillars in influencing cybercriminals’ and cyberattackers’ operations in cyberspace. It then reviews the existing scientific evidence assessing various aspects of deterrence in the context of several disciplines: criminology, law, information systems, and political science. This chapter ends with a few policy implications and proposed directions for future interdisciplinary academic research

    A novel porous media-based approach to outflow boundary resistances of 1D arterial blood flow models

    Get PDF
    In this paper we introduce a novel method for prescribing terminal boundary conditions in one-dimensional arterial flow networks. This is carried out by coupling the terminal arterial vessel with a poro-elastic tube, representing the flow resistance offered by microcirculation. The performance of the proposed porous media-based model has been investigated through several different numerical examples. First, we investigate model parameters that have a profound influence on the flow and pressure distributions of the system. The simulation results have been compared against the waveforms generated by three elements (RCR) Windkessel model. The proposed model is also integrated into a realistic arterial tree, and the results obtained have been compared against experimental data at different locations of the network. The accuracy and simplicity of the proposed model demonstrates that it can be an excellent alternative for the existing models

    Numerical investigation of a phase change material including natural convection effects

    No full text
    Nowadays, Organic Rankine Cycle (ORC) is one of the most promising technologies analyzed for electrical power generation from low-temperature heat such as renewable energy sources (RES), especially solar energy. Because of the solar source variation throughout the day, additional Thermal Energy Storage (TES) systems can be employed to store the energy surplus saved during the daytime, in order to use it at nighttime or when meteorological conditions are adverse. In this context, latent heat stored in phase-change transition by Phase Change Materials (PCM) allows them to stock larger amounts of energy because of the larger latent energy values as compared to the specific heat capacity. In this study, a thermal analysis of a square PCM for a solar ORC is carried out, considering four different boundary conditions that refer to different situations. Furthermore, differences in including or not natural convection effects in the model are shown. Governing equations for the PCM are written with references to the heat capacity method and solved with a finite element scheme. Experimental data from literature are employed to simulate the solar source using a time-variable temperature boundary condition. Results are presented in terms of temperature profiles, stored energy, velocity fields and melting fraction, showing that natural convection effects are remarkable on the temperature values and consequently on the stored energy achieved

    Simulations of paraffine melting inside metal foams at different gravity levels with preliminary experimental validation

    Get PDF
    In this work, the results of a numerical code based on the porous media Local Thermal Non-Equilibrium (LTNE) and the apparent heat capacity methods, are compared with experiments aiming at a preliminary validation. The test cell consists in a 50 mm aluminum foam cube filled with a paraffin wax, heated and cooled on the same face. The heat flux is measured by two miniaturized sensors, while the temperature is measured in three different locations along the cube edge. Finally, one side is equipped with a Zinc Selenide window which is transparent to the long wave InfraRed. This system allows to track the paraffin melting front evolution together with the temporal trend of the whole temperature distribution simplifying the comparison with the numerical outputs at different time steps. The numerical model is then set with the same boundary conditions (heat flux) to predict the experimental temperature fields, considering both conduction in the solid domain and natural convection in the liquid domain. The preliminary validation shows that the numerical results match the experimental data with good agreement. Results are also presented for different gravity levels. This study can be a starting point for all those applications where gravity has a major role

    Multi-Objective Optimization of a Heat Sink for the Thermal Management of a Peltier-Cell-Based Biomedical Refrigerator

    No full text
    Both storage and transport of medical products remains a challenging task because of many variables as well as infrastructures, territory, and so on. Among these variables, monitoring the medical products temperature is fundamental to guarantee their safety. On the other hand, for sectors like aerospace delivery, weight has a crucial role too. For such applications and especially for strongly variable external temperatures, Peltier cells might be employed for either cooling or heating medical products to be stored. Accordingly, this study addresses the optimization of a heat sink for the thermal management of a Peltier-cell-based biomedical refrigerator. In detail, a brute-force multi-objective optimization of an impinging-flow finned heat sink for the Peltier cell is carried out here. Thermal resistance, weight, and pressure drop are chosen as the three-objective functions to be minimized, with both geometrical and volumetric flow rate as design variables. The results present a very large bunch of optimal solutions to design such devices. With the utopia optimum criterion, Rth = 0.159 °C/W, msink = 0.550 kg, and Δp = 14.99 Pa are obtained. Finally, both multiple-linear regression and artificial neural networks are employed to relate design variables with the objective functions, in order to provide the final user with a practical tool for the optimal design of such devices
    • …
    corecore