39 research outputs found

    Hypoxia-Induced Molecular and Cellular Changes in the Congenitally Diseased Heart: Mechanisms and Strategies of Intervention

    Get PDF
    Tissue hypoxia plays a critical role in the pathobiology of congenital heart diseases, especially with regard to cyanotic patients. Here, we describe the cellular and molecular mechanisms induced by hypoxia in the diseased heart, with particular attention to the metabolic and functional changes that underlie the hypoxia-induced right ventricle remodelling. The role of reactive oxygen species in transcriptomic changes, DNA damage, contractile dysfunction and extracellular matrix remodelling will be addressed. Furthermore, the reoxygenation injury, which occurs when oxygen is reintroduced upon initiation of cardiopulmonary bypass, will be discussed. This allows a better understanding of the risks associated with the reoxygenation injury in children undergoing open-heart surgery and helps to improve strategies of intervention for myocardial protection

    The Intrinsic Virtues of EGCG, an Extremely Good Cell Guardian, on Prevention and Treatment of Diabesity Complications

    Get PDF
    The pandemic proportion of diabesity—a combination of obesity and diabetes—sets a worldwide health issue. Experimental and clinical studies have progressively reinforced the pioneering epidemiological observation of an inverse relationship between consumption of polyphenol-rich nutraceutical agents and mortality from cardiovascular and metabolic diseases. With chemical identification of epigallocatechin-3-gallate (EGCG) as the most abundant catechin of green tea, a number of cellular and molecular mechanisms underlying the activities of this unique catechin have been proposed. Favorable effects of EGCG have been initially attributed to its scavenging effects on free radicals, inhibition of ROS-generating mechanisms and upregulation of antioxidant enzymes. Biologic actions of EGCG are concentration-dependent and under certain conditions EGCG may exert pro-oxidant activities, including generation of free radicals. The discovery of 67-kDa laminin as potential EGCG membrane target has broaden the likelihood that EGCG may function not only because of its highly reactive nature, but also via receptor-mediated activation of multiple signaling pathways involved in cell proliferation, angiogenesis and apoptosis. Finally, by acting as epigenetic modulator of DNA methylation and chromatin remodeling, EGCG may alter gene expression and modify miRNA activities. Despite unceasing research providing detailed insights, ECGC composite activities are still not completely understood. This review summarizes the most recent evidence on molecular mechanisms by which EGCG may activate signal transduction pathways, regulate transcription factors or promote epigenetic changes that may contribute to prevent pathologic processes involved in diabesity and its cardiovascular complication

    Accelerated cardiac aging in patients with congenital heart disease

    Get PDF
    An increasing number of patients with congenital heart disease (CHD) survive into adulthood but develop long-term complications including heart failure (HF). Cellular senescence, classically defined as stable cell cycle arrest, is implicated in biological processes such as embryogenesis, wound healing, and aging. Senescent cells have a complex senescence-associated secretory phenotype (SASP), involving a range of pro-inflammatory factors with important paracrine and autocrine effects on cell and tissue biology. While senescence has been mainly considered as a cause of diseases in the adulthood, it may be also implicated in some of the poor outcomes seen in patients with complex CHD. We propose that patients with CHD suffer from multiple repeated stress from an early stage of the life, which wear out homeostatic mechanisms and cause premature cardiac aging, with this term referring to the time-related irreversible deterioration of the organ physiological functions and integrity. In this review article, we gathered evidence from the literature indicating that growing up with CHD leads to abnormal inflammatory response, loss of proteostasis, and precocious age in cardiac cells. Novel research on this topic may inspire new therapies preventing HF in adult CHD patients

    Protein Phosphatase 1 Beta is Modulated by Chronic Hypoxia and Involved in the Angiogenic Endothelial Cell Migration

    Get PDF
    Background/Aim: Endothelial cell migration is required for physiological angiogenesis, but also contributes to various pathological conditions, including tumour vascularization. The mRNA expression of PP1cβ, the beta isoform of the catalytic PP1 subunit, was shown to be upregulated in chronic hypoxia. Since hypoxia is a major regulator of angiogenesis, the potential role of PP1cβ in angiogenesis was investigated. Methods: We examined PP1cβ protein level in pediatric heart following chronic hypoxia and found PP1cβ upregulation in cyanotic compared with acyanotic myocardium. By treating HUVEC cells with hypoxia mimicking agent, PP1cβ protein level increased with maximum at 8 hours. The effect of PP1cβ pharmacological inhibition, knockdown and overexpression, on endothelial cell migration and morphogenesis, was examined using in vitro wound healing scratch assay and endothelial tube formation assay. The PP1cβ knockdown effects on F-actin reorganization (phalloidin staining), focal adhesion formation (vinculin) and focal adhesion kinases (FAK) activation, were evaluated by immunocytochemical staining and immunoblotting with specific antibodies. Results: PP1cβ knockdown significantly reduces endothelial cell migration, but does not have any significant effect on endothelial tube formation. Endothelial cell migration in the knockdown group is restored to the control level upon consecutive transfection with PP1cβ cDNA. PP1cβ overexpression does not significantly affect endothelial cell migration. Furthermore, PP1cβ knockdown induces profound cytoskeletal reorganization, loss of focal adhesion sites and impairment of focal adhesion kinases (FAK) activation. Conclusions: PP1cβ is regulator of endothelial cell migration, which is critical in the angiogenic process. PP1cβ inhibition reduces endothelial cell migration through focal adhesion turnover and actin polymerization pathways

    Transcriptional Regulation Factors of the Human Mitochondrial Aspartate/Glutamate Carrier Gene, Isoform 2 (\u3cem\u3eSLC25A13\u3c/em\u3e): USF1 as Basal Factor and FOXA2 as Activator in Liver Cells

    Get PDF
    Mitochondrial carriers catalyse the translocation of numerous metabolites across the inner mitochondrial membrane, playing a key role in different cell functions. For this reason, mitochondrial carrier gene expression needs tight regulation. The human SLC25A13 gene, encoding for the mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), catalyses the electrogenic exchange of aspartate for glutamate plus a proton, thus taking part in many metabolic processes including the malate-aspartate shuttle. By the luciferase (LUC) activity of promoter deletion constructs we identified the putative promoter region, comprising the proximal promoter (−442 bp/−19 bp), as well as an enhancer region (−968 bp/−768 bp). Furthermore, with different approaches, such as in silico promoter analysis, gene silencing and chromatin immunoprecipitation, we identified two transcription factors responsible for SLC25A13 transcriptional regulation: FOXA2 and USF1. USF1 acts as a positive transcription factor which binds to the basal promoter thus ensuring SLC25A13 gene expression in a wide range of tissues. The role of FOXA2 is different, working as an activator in hepatic cells. As a tumour suppressor, FOXA2 could be responsible for SLC25A13 high expression levels in liver and its downregulation in hepatocellular carcinoma (HCC)
    corecore