18 research outputs found

    Force Measurements of TCR/pMHC Recognition at T Cell Surface

    Get PDF
    The rupture forces and adhesion frequencies of single recognition complexes between an affinity selected peptide/MHC complex and a TCR at a murine hybridoma surface were measured using Atomic Force Microscopy. When the CD8 coreceptor is absent, the adhesion frequency depends on the nature of the peptide but the rupture force does not. When CD8 is present, no effect of the nature of the peptide is observed. CD8 is proposed to act as a time and distance lock, enabling the shorter TCR molecule to bridge the pMHC and have time to finely read the peptide. Ultimately, such experiments could help the dissection of the sequential steps by which the TCR reads the peptide/MHC complex in order to control T cell activation

    Specific binding of antigenic peptides to cell-associated MHC class I molecules.

    No full text
    T lymphocytes recognize antigen in the form of peptides that associate with specific alleles of class I or class II major histocompatibility (MHC) molecules. By contrast with the clear MHC allele-specific binding of peptides to purified class II molecules purified solubilized class I molecules either bind relatively poorly or show degenerate specificity. Using photo-affinity labelling, we demonstrate here the specific interaction of peptides with cell-associated MHC class I molecules and show that this involves metabolically active processes

    CSP-A Model for In Vivo Presentation of Plasmodium berghei Sporozoite Antigens by Hepatocytes.

    Get PDF
    One target of protective immunity against the Plasmodium liver stage in BALB/c mice is represented by the circumsporozoite protein (CSP), and mainly involves its recognition by IFN-γ producing specific CD8+T-cells. In a previous in vitro study we showed that primary hepatocytes from BALB/c mice process Plasmodium berghei (Pb) CSP (PbCSP) and present CSP-derived peptides to specific H-2k(d) restricted CD8+T-cells with subsequent killing of the presenting cells. We now extend these observations to an in vivo infection model in which infected hepatocytes and antigen specific T-cell clones are transferred into recipient mice inducing protection from sporozoite (SPZ) challenge. In addition, using a similar protocol, we suggest the capacity of hepatocytes in priming of naïve T-cells to provide protection, as further confirmed by induction of protection after depletion of cross-presenting dendritic cells (DCs) by cytochrome c (cyt c) treatment or using traversal deficient parasites. Our results clearly show that hepatocytes present Plasmodium CSP to specific-primed CD8+T-cells, and could also prime naïve T-cells, leading to protection from infection. These results could contribute to a better understanding of liver stage immune response and design of malaria vaccines

    CD8 modulation of T-cell antigen receptor-ligand interactions on living cytotoxic T lymphocytes.

    No full text
    Thymocytes and class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes express predominantly heterodimeric alpha/beta CD8. By interacting with non-polymorphic regions of MHC class I molecules CD8 can mediate adhesion or by binding the same MHC molecules that interact with the T-cell antigen receptor (TCR) function as coreceptor in TCR-ligand binding and T-cell activation. Using TCR photoaffinity labelling with a soluble, monomeric photoreactive H-2Kd-peptide derivative complex, we report here that the avidity of TCR-ligand interactions on cloned cytotoxic T cells is very greatly strengthened by CD8. This is primarily explained by coordinate binding of ligand molecules by CD8 and TCR, because substitution of Asp 227 of Kd with Lys severely impaired the TCR-ligand binding on CD8+, but not CD8- cells. Kinetic studies on CD8+ and CD8- cells further showed that CD8 imposes distinct dynamics and a remarkable temperature dependence on TCR-ligand interactions. We propose that the ability of CD8 to act as coreceptor can be modulated by CD8-TCR interactions

    Efficient T cell activation requires an optimal dwell-time of interaction between the TCR and the pMHC complex.

    No full text
    Cytotoxic T cell (CTL) activation by antigen requires the specific detection of peptide-major histocompatibility class I (pMHC) molecules on the target-cell surface by the T cell receptor (TCR). We examined the effect of mutations in the antigen-binding site of a Kb-restricted TCR on T cell activation, antigen binding and dissociation from antigen.These parameters were also examined for variants derived from a Kd-restricted peptide that was recognized by a CTL clone. Using these two independent systems, we show that T cell activation can be impaired by mutations that either decrease or increase the binding half-life of the TCR-pMHC interaction. Our data indicate that efficient T cell activation occurs within an optimal dwell-time range of TCR-pMHC interaction. This restricted dwell-time range is consistent with the exclusion of either extremely low or high affinity T cells from the expanded population during immune responses

    Clinical and immunological responses in metastatic melanoma patients vaccinated with a high-dose poly-epitope vaccine

    No full text
    BACKGROUND: Safety and cellular immunogenicity of rising doses and varying regimens of a poly-epitope vaccine were evaluated in advanced metastatic melanoma. The vaccine comprised plasmid DNA and recombinant modified vaccinia virus Ankara (MVA) both expressing a string (Mel3) of seven HLA.A2/A1 epitopes from five melanoma antigens. METHODS: Forty-one HLA-A2 positive patients with stage III/IV melanoma were enrolled. Patient groups received one or two doses of DNA.Mel3 followed by escalating doses of MVA.Mel3. Immunisations then continued eight weekly in the absence of disease progression. Epitope-specific CD8+ T cell responses were evaluated using ex-vivo tetramer and IFN-gamma ELISPOT assays. Safety and clinical responses were monitored. RESULTS: Prime-boost DNA/MVA induced Melan-A-specific CD8+ T cell responses in 22/31 (71%) patients detected by tetramer assay. ELISPOT detected a response to at least one epitope in 10/31 (32%) patients. T cell responder rates were <50% with low-dose DNA/MVA, or MVA alone, rising to 91% with high-dose DNA/MVA. Among eight patients showing evidence of clinical benefit-one PR (24 months+), five SD (5 months+) and two mixed responses-seven had associated immune responses. Melan-A-tetramer+ immunity was associated with a median 8-week increase in time-to-progression (P = 0.037) and 71 week increase in survival (P = 0.0002) compared to non-immunity. High-dose vaccine was well tolerated. The only significant toxicities were flu-like symptoms and injection-site reactions. CONCLUSIONS: DNA.Mel3 and MVA.Mel3 in a prime-boost protocol generated high rates of immune response to melanoma antigen epitopes. The treatment was well tolerated and the correlation of immune responses with patient outcomes encourages further investigation
    corecore