124 research outputs found

    A Simple Method to Check the Reliability of Annual Sunspot Number in the Historical Period 1610-1847

    Full text link
    A simple method to detect inconsistencies in low annual sunspot numbers based on the relationship between these values and the annual number of active days is described. The analysis allowed for the detection of problems in the annual sunspot number series clustered in a few specific periods and unambiguous, namely: i) before Maunder minimum, ii) the year 1652 during the Maunder minimum, iii) the year 1741 in Solar Cycle -1, and iv) the so-called "lost" solar cycle in 1790s and subsequent onset of the Dalton Minimum.Comment: 15 pages, 3 figures, to be published in Solar Physic

    Long-Term Solar Cycle Evolution: Review of Recent Developments

    Full text link

    Is Cycle 24 the Beginning of a Dalton-Like Minimum?

    Full text link
    The unexpected development of cycle 24 emphasizes the need for a better way to model future solar activity. In this article, we analyze the accumulation of spotless days during individual cycles from 1798-2010. The analysis shows that spotless days do not disappear abruptly in the transition towards an active sun. A comparison with past cycles indicates that the ongoing accumulation of spotless days is comparable to that of cycle 5 near the Dalton minimum and to that of cycles 12, 14 and 15. It also suggests that the ongoing cycle has as much as 20 \pm 8 spotless days left, from July 2010, before it reaches the next solar maximum. The last spotless day is predicted to be in December 2012, with an uncertainty of 11 months. This trend may serve as input to the solar dynamo theories.Comment: 10 pages, 5 figures. The final publication is available at http://www.springerlink.co

    A new calibrated sunspot group series since 1749: statistics of active day fractions

    Get PDF
    Although the sunspot-number series have existed since the mid-19th century, they are still the subject of intense debate, with the largest uncertainty being related to the "calibration" of the visual acuity of individual observers in the past. Daisy-chain regression methods are applied to inter-calibrate the observers which may lead to significant bias and error accumulation. Here we present a novel method to calibrate the visual acuity of the key observers to the reference data set of Royal Greenwich Observatory sunspot groups for the period 1900-1976, using the statistics of the active-day fraction. For each observer we independently evaluate their observational thresholds [S_S] defined such that the observer is assumed to miss all of the groups with an area smaller than S_S and report all the groups larger than S_S. Next, using a Monte-Carlo method we construct, from the reference data set, a correction matrix for each observer. The correction matrices are significantly non-linear and cannot be approximated by a linear regression or proportionality. We emphasize that corrections based on a linear proportionality between annually averaged data lead to serious biases and distortions of the data. The correction matrices are applied to the original sunspot group records for each day, and finally the composite corrected series is produced for the period since 1748. The corrected series displays secular minima around 1800 (Dalton minimum) and 1900 (Gleissberg minimum), as well as the Modern grand maximum of activity in the second half of the 20th century. The uniqueness of the grand maximum is confirmed for the last 250 years. It is shown that the adoption of a linear relationship between the data of Wolf and Wolfer results in grossly inflated group numbers in the 18th and 19th centuries in some reconstructions

    Solar Grand Minima and random fluctuations in dynamo parameters

    Full text link
    We consider to what extent the long-term dynamics of cyclic solar activity in the form of Grand Minima can be associated with random fluctuations of the parameters governing the solar dynamo. We consider fluctuations of the alpha-coefficient in the conventional Parker migratory dynamo, and also in slightly more sophisticated dynamo models, and demonstrate that they can mimic the gross features of the phenomenon of the occurrence of Grand Minima over a suitable parameter range. The temporal distribution of these Grand Minima appears chaotic, with a more or less exponential waiting time distribution, typical of Poisson processes. In contrast however, the available reconstruction of Grand Minima statistics based on cosmogenic isotope data demonstrates substantial deviations from this exponential law. We were unable to reproduce the non-Poissonic tail of the waiting time distribution either in the framework of a simple alpha-quenched Parker model, or in its straightforward generalization, nor in simple models with feedback on the differential rotation. We suggest that the disagreement may only be apparent and is plausibly related to the limited observational data, and that the observations and results of numerical modeling can be consistent and represent physically similar dynamo regimes.Comment: Solar Physics, in prin

    Time-variability in the Interstellar Boundary Conditions of the Heliosphere: Effect of the Solar Journey on the Galactic Cosmic Ray Flux at Earth

    Full text link
    During the solar journey through galactic space, variations in the physical properties of the surrounding interstellar medium (ISM) modify the heliosphere and modulate the flux of galactic cosmic rays (GCR) at the surface of the Earth, with consequences for the terrestrial record of cosmogenic radionuclides. One phenomenon that needs studying is the effect on cosmogenic isotope production of changing anomalous cosmic ray fluxes at Earth due to variable interstellar ionizations. The possible range of interstellar ram pressures and ionization levels in the low density solar environment generate dramatically different possible heliosphere configurations, with a wide range of particle fluxes of interstellar neutrals, their secondary products, and GCRs arriving at Earth. Simple models of the distribution and densities of ISM in the downwind direction give cloud transition timescales that can be directly compared with cosmogenic radionuclide geologic records. Both the interstellar data and cosmogenic radionuclide data are consistent with cloud transitions during the Holocene, with large and assumption-dependent uncertainties. The geomagnetic timeline derived from cosmic ray fluxes at Earth may require adjustment to account for the disappearance of anomalous cosmic rays when the Sun is immersed in ionized gas.Comment: Submitted to Space Sciences Review

    Tests of sunspot number sequences: 2. Using geomagnetic and auroral data

    Get PDF
    We compare four sunspot-number data sequences against geomagnetic and terrestrial auroral observations. The comparisons are made for the original SIDC (Solar Influences Data Center) composite of Wolf/Zürich/International sunspot number [RISNv1], the group sunspot number [RG] by Hoyt and Schatten (Solar Phys., 181, 491, 1998), the new “backbone” group sunspot number [RBB] by Svalgaard and Schatten (Solar Phys., doi: 10.1007/s11207-015-0815-8, 2016), and the “corrected” sunspot number [RC] by Lockwood, Owens, and Barnard (J. Geophys. Res., 119, 5172, 2014). Each sunspot number is fitted with terrestrial observations, or parameters derived from terrestrial observations to be linearly proportional to sunspot number, over a 30-year calibration interval of 1982 - 2012. The fits are then used to compute test sequences, which extend further back in time and which are compared to RISNv1, RG, RBB, and RC. To study the long-term trends, comparisons are made using averages over whole solar cycles (minimum-to-minimum). The test variations are generated in four ways: i) using the IDV(1d) and IDV geomagnetic indices (for 1845 - 2013) fitted over the calibration interval using the various sunspot numbers and the phase of the solar cycle; ii) from the open solar flux (OSF) generated for 1845 - 2013 from four pairings of geomagnetic indices by Lockwood et al. (Ann. Geophys., 32, 383, 2014) and analysed using the OSF continuity model of Solanki, Schüssler, and Fligge (Nature, 408, 445, 2000) which employs a constant fractional OSF loss rate; iii) the same OSF data analysed using the OSF continuity model of Owens and Lockwood (J. Geophys. Res., 117, A04102, 2012) in which the fractional loss rate varies with the tilt of the heliospheric current sheet and hence with the phase of the solar cycle; iv) the occurrence frequency of low-latitude aurora for 1780 - 1980 from the survey of Legrand and Simon (Ann. Geophys., 5, 161, 1987). For all cases, RBB exceeds the test terrestrial series by an amount that increases as one goes back in time

    The 22-Year Hale Cycle in cosmic ray flux: evidence for direct heliospheric modulation

    Get PDF
    The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when the northern solar pole has predominantly positive (denoted as qA>0 cycle) or negative (qA0 cycles than for qA0 and more sharply peaked for qA0 solar cycles, when the difference in GCR flux is most apparent. This suggests that particle drifts may not be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we also demonstrate that these polarity-dependent heliospheric differences are evident during the space-age but are much less clear in earlier data: using geomagnetic reconstructions, we show that for the period of 1905 - 1965, alternate polarities do not give as significant a difference during the declining phase of the solar cycle. Thus we suggest that the 22-year cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric magnetic field and that this effect may be primarily limited to the grand solar maximum of the space-age
    • …
    corecore