2,041 research outputs found
Stochastic simulations for the time evolution of systems which obey generalized statistics: Fractional exclusion statistics and Gentile's statistics
We present a stochastic method for the simulation of the time evolution in
systems which obey generalized statistics, namely fractional exclusion
statistics and Gentile's statistics. The transition rates are derived in the
framework of canonical ensembles. This approach introduces a tool for
describing interacting fermionic and bosonic systems in non-equilibrium as
ideal FES systems, in a computationally efficient manner. The two types of
statistics are analyzed comparatively, indicating their intrinsic thermodynamic
differences and revealing key aspects related to the species size.Comment: 14 pages, 5 figures, IOP forma
Scattering of slow-light gap solitons with charges in a two-level medium
The Maxwell-Bloch system describes a quantum two-level medium interacting
with a classical electromagnetic field by mediation of the the population
density. This population density variation is a purely quantum effect which is
actually at the very origin of nonlinearity. The resulting nonlinear coupling
possesses particularly interesting consequences at the resonance (when the
frequency of the excitation is close to the transition frequency of the
two-level medium) as e.g. slow-light gap solitons that result from the
nonlinear instability of the evanescent wave at the boundary. As nonlinearity
couples the different polarizations of the electromagnetic field, the
slow-light gap soliton is shown to experience effective scattering whith
charges in the medium, allowing it for instance to be trapped or reflected.
This scattering process is understood qualitatively as being governed by a
nonlinear Schroedinger model in an external potential related to the charges
(the electrostatic permanent background component of the field).Comment: RevTex, 14 pages with 5 figures, to appear in J. Phys. A: Math. Theo
Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)
Submitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingSubmitted for the January 2014 Fermilab Physics Advisory Committee meetingNeutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Water Cherenkov neutrino detectors
Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)
Neutron tagging in Gadolinium-doped water may play a significant role in
reducing backgrounds from atmospheric neutrinos in next generation proton-decay
searches using megaton-scale Water Cherenkov detectors. Similar techniques
might also be useful in the detection of supernova neutrinos. Accurate
determination of neutron tagging efficiencies will require a detailed
understanding of the number of neutrons produced by neutrino interactions in
water as a function of momentum transferred. We propose the Atmospheric
Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the
neutron yield of atmospheric neutrino interactions in gadolinium-doped water.
An innovative aspect of the ANNIE design is the use of precision timing to
localize interaction vertices in the small fiducial volume of the detector. We
propose to achieve this by using early production of LAPPDs (Large Area
Picosecond Photodetectors). This experiment will be a first application of
these devices demonstrating their feasibility for Water Cherenkov neutrino
detectors.Comment: Submitted for the January 2014 Fermilab Physics Advisory Committee
meetin
Dynamical system analysis and forecasting of deformation produced by an earthquake fault
We present a method of constructing low-dimensional nonlinear models
describing the main dynamical features of a discrete 2D cellular fault zone,
with many degrees of freedom, embedded in a 3D elastic solid. A given fault
system is characterized by a set of parameters that describe the dynamics,
rheology, property disorder, and fault geometry. Depending on the location in
the system parameter space we show that the coarse dynamics of the fault can be
confined to an attractor whose dimension is significantly smaller than the
space in which the dynamics takes place. Our strategy of system reduction is to
search for a few coherent structures that dominate the dynamics and to capture
the interaction between these coherent structures. The identification of the
basic interacting structures is obtained by applying the Proper Orthogonal
Decomposition (POD) to the surface deformations fields that accompany
strike-slip faulting accumulated over equal time intervals. We use a
feed-forward artificial neural network (ANN) architecture for the
identification of the system dynamics projected onto the subspace (model space)
spanned by the most energetic coherent structures. The ANN is trained using a
standard back-propagation algorithm to predict (map) the values of the observed
model state at a future time given the observed model state at the present
time. This ANN provides an approximate, large scale, dynamical model for the
fault.Comment: 30 pages, 12 figure
THE LOAD-CARRYING CAPACITY FOR SOME TUBULAR REACTORS AND STRESS CONCENTRATION
The
purpose of this paper was to evaluate the state of stress and the stress concentration in the main critical junctions of a tubular reactor.
Additional two numerical analyses were developed to identify the critical
junctions of reactor due to the main loads: temperature gradient and internal
pressure. One analysis is based on the extension of classical thin
shell theory and the flexibility matrix method and the second on the
finite element method (FEM), by the package COSMOS/M Designer II.
Comparative experimental study based on recording the strains at
selected surface positions, for different values of the reaction loads,
was done using strain gauges. The analyses reveal a reasonable accuracy
of the results and accurate positioning of the critical junctions.
The loads are variable, so that the study may give a primary estimation
on the fatigue design and analysis
THEORETICAL AND EXPERIMENTAL STUDIES ON DISKS CENTRIFUGAL SEPARATORS
The paper presents an extension of classical thin shell theory to those with moderate
thickness, having simplex order h/R ≤ 0.2 ... 0.33. The application of the flexibility
matrix method is studied to realise a computerised analysis of centrifugal disks separators
for the influence of the central load Fa induced for assembling the bowl and for the critical
area junctions. In the first time, the separator's bowl is divided in structural elements; each
of the structural elements is at first considered separately and then the global generalised
forces and bending moments are obtained from the displacement compatibility conditions
at each element junction. Comparative experimental investigations based on recording
surface strains at selected locations of the bowl performed with strain gauges reveal a
reasonable agreement. The main features of the method as, (1) reasonable accuracy of
the results, (2) reasonable positioning of the critical junctions, (3) low computational cost,
give a real possibility in the design work
The Data Quality Monitoring for the CMS Silicon Strip Tracker
The CMS Silicon Strip Tracker (SST), consisting of more than 10 million channels, is organized in about 15,000 detector modules and it is the largest silicon strip tracker ever built for high energy physics experiments. The Data Quality Monitoring system for the Tracker has been developed within the CMS Software framework. More than 100,000 monitorable quantities need to be managed by the DQM system that organizes them in a hierarchical structure reflecting the detector arrangement in subcomponents and the various levels of data processing. Monitorable quantities computed at the level of individual detectors are processed to extract automatic quality checks and summary results that can be visualized with specialized graphical user interfaces. In view of the great complexity of the CMS Tracker detector the standard visualization tools based on histograms have been complemented with 2 and 3 dimensional graphical images of the subdetector that can show the whole detector down to single channel resolution. The functionalities of the CMS Silicon Strip Tracker DQM system and the experience acquired during the SST commissioning will be described
- …
