2 research outputs found

    The faunal role in the degradation of the common intertidal salt marsh plant Scirpus maritimus

    Get PDF
    Abstract The aim of this work was to evaluate the role of different environmental conditions (oxic and anoxic), and the presence of macrofauna and/or meiofauna during the different steps of Scirpus maritimus L. decomposition/mineralization under controlled laboratory conditions. The results showed no significant differences between the anaerobic and the aerobic degradation of plant material, under the presence of bacteria or meiofauna. Nevertheless, under anoxic conditions sediment mineralization was enhanced, with an increase concentration of phosphorus and ammonium in the water phase. Concerning the presence of fauna, results show that, although bacterial activity was responsible for 70% of the S. maritimus leaves degradation, the presence of macrofauna together with meiofauna enhanced the leaves mineralization up to 90%. Moreover, the presence of macrofauna together with meiofauna significantly affected the decomposition of phosphorus and of nitrogen, as well as the leaves lesser labile structural parts, by increasing the mineralization of plant carbon, and raised the nutrient turnover within the system.The present study reinforces the functional link between fauna levels on the nutrient dynamics in salt marshes ecosystems, namely at the vegetation detritus/water column interface

    Variability in energy influences avian distribution patterns across the USA

    No full text
    Habitat transformations and climate change are among the most important drivers of biodiversity loss. Understanding the factors responsible for the unequal distribution of species richness is a major challenge in ecology. Using data from the North American Breeding Bird Survey to measure species richness and a change metric extracted from the MODerate resolution Imaging Spectroradiometer (MODIS), we examined the influence of energy variability on the geographic distribution of avian richness across the conterminous U.S. and in the different ecoregions, while controlling for energy availability. The analysis compared three groups of birds: all species, Neotropical migrants, and permanent residents. We found that interannual variability in available energy explained more than half of the observed variation in bird richness in some ecoregions. In particular, energy variability is an important factor in explaining the patterns of overall bird richness and of permanent residents, in addition to energy availability. Our results showed a decrease in species richness with increasing energy variability and decreasing energy availability, suggesting that more species are found in more stable and more productive environments. However, not all ecoregions followed this pattern. The exceptions might reflect other biological factors and environmental conditions. With more ecoclimatic variability predicted for the future, this study provides insight into how energy variability influences the geographical patterns of species richness
    corecore