11,879 research outputs found

    Parity-violating πNN\pi NN coupling constant from the flavor-conserving effective weak chiral Lagrangian

    Full text link
    We investigate the parity-violating pion-nucleon-nucleon coupling constant hπNN1h^1_{\pi NN}, based on the chiral quark-soliton model. We employ an effective weak Hamiltonian that takes into account the next-to-leading order corrections from QCD to the weak interactions at the quark level. Using the gradient expansion, we derive the leading-order effective weak chiral Lagrangian with the low-energy constants determined. The effective weak chiral Lagrangian is incorporated in the chiral quark-soliton model to calculate the parity-violating πNN\pi NN constant hπNN1h^1_{\pi NN}. We obtain a value of about 10−710^{-7} at the leading order. The corrections from the next-to-leading order reduce the leading order result by about 20~\%.Comment: 12 page

    Iterative algorithms for partitioned neural network approximation to partial differential equations

    Full text link
    To enhance solution accuracy and training efficiency in neural network approximation to partial differential equations, partitioned neural networks can be used as a solution surrogate instead of a single large and deep neural network defined on the whole problem domain. In such a partitioned neural network approach, suitable interface conditions or subdomain boundary conditions are combined to obtain a convergent approximate solution. However, there has been no rigorous study on the convergence and parallel computing enhancement on the partitioned neural network approach. In this paper, iterative algorithms are proposed to address these issues. Our algorithms are based on classical additive Schwarz domain decomposition methods. Numerical results are included to show the performance of the proposed iterative algorithms

    Some Identities on the High-Order -Euler Numbers and Polynomials with Weight 0

    Get PDF
    We construct the th order nonlinear ordinary differential equation related to the generating function of -Euler numbers with weight 0. From this, we derive some identities on -Euler numbers and polynomials of higher order with weight 0

    A photonic-crystal optical antenna for extremely large local-field enhancement

    Get PDF
    We propose a novel design of an all-dielectric optical antenna based on photonic-band-gap confinement. Specifically, we have engineered the photonic-crystal dipole mode to have broad spectral response (Q ~70) and well-directed vertical-radiation by introducing a plane mirror below the cavity. Considerably large local electric-field intensity enhancement ~4,500 is expected from the proposed design for a normally incident planewave. Furthermore, an analytic model developed based on coupled-mode theory predicts that the electric-field intensity enhancement can easily be over 100,000 by employing reasonably high-Q (~10,000) resonators

    Algae–bacteria interactions: Evolution, ecology and emerging applications

    Get PDF
    AbstractAlgae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions — from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae–roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal–bacterial interactions to various environmental and bio-technological applications

    Examining Information Systems Infusion over the Routinization

    Get PDF
    Information systems (IS) infusion becomes important from the management perspective because organizations can leverage IS investment only at the IS infusion stage. The model for the stages of IS implementation explains that IS infusion can be achieved through IS routinization. This study examined how to achieve IS infusion through routinization based on application of the psychological empowerment theory and the unified theory of acceptance and use of technology (UTAUT), respectively. This study adds value to the IS literature by explaining how IS routinization leads to IS infusion and how their antecedents are different and related across the two stages. This study also provides guidance on how organizations can promote IS infusion beyond IS routinization, which then helps organizations leverage their IS investments
    • …
    corecore