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Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life
on earth inmany aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and
represent all conceivablemodes of interactions— frommutualism to parasitism. Several studies have shown that
algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae–
roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosys-
tems. In recent years, algae have received much attention for industrial exploitation but their interaction with
bacteria is often considered a contamination during commercialization. A few recent studies have shown that
bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnol-
ogy. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and
integrate this understanding for industrial use. Herewe reflect on the diversity of such relationships and their as-
sociated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of
these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochem-
ical cycles. Finally, we focus on extending such studies on algal–bacterial interactions to various environmental
and bio-technological applications.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Algae are the undisputed primary producers in the aquatic
ecosystem and contribute approximately half of the global net primary
productivity (Field et al., 1998). These photosynthetic organisms along
with cyanobacteria live in the planktonic region of the aquatic habitat
and are collectively called phytoplankton (Buchan et al., 2014). Phyto-
plankton and bacterioplankton numerically dominate the ocean and
freshwater planktonic community (Sarmento and Gasol, 2012). These
plankton communities together influence the global carbon cycle and
ultimately the climate. Therefore, the interactions between these two
groups of plankton and the influence of their interaction on each other
and on a global scale are areas of recent research interest (Amin et al.,
2015; Landa et al., 2015). Several studies show that heterotrophic
bacteria play a ubiquitous role in algal growth and survival (Amin et al.,
2015; Gonzalez and Bashan, 2000; Kim et al., 2014a; Seyedsayamdost
et al., 2011). Thus, it opens the possibility for revisiting the global carbon
cycle and other biogeochemical processes (Amin et al., 2012, 2015; Landa
et al., 2015). Similarly, decades earlier in terrestrial ecosystem, it was
proven that heterotrophic bacteria not only decompose plant and animal
organic matter, but also promote plant growth by complex communica-
tion mechanisms and nutrient exchange (Philippot et al., 2013). In this
context, evidence of prominent rhizosphere bacteria associated with
algae casts light on the possibility of coevolution (Cooper and Smith,
2015; Goecke et al., 2013; Kim et al., 2014a; Ramanan et al., 2015).
Therefore, mass cultivation in algal biotechnology should integrate the
essence of evolutionary and ecologically relevant relationship between
algae and bacteria. Together they not only influence ecosystems but
also could potentially influence the growth of future biotechnology
industry (Subashchandrabose et al., 2011; Wang et al., 2015). Thus, this
review attempts to articulate algal–bacterial interactions in totality,
from ecology and evolution, to the use of this knowledge to invigorate
their combined biotechnological potential.

Evolution of life was transitionary where self-replicating molecules
and chemicals formed the basis of prokaryotes. Subsequently, aggrega-
tion of prokaryotes let to eukaryotes. Cyanobacteria, a prokaryote, and
their association with eukaryotes evolved into algae. A group of single-
celled algae and other ancestors led to multicellular organisms (Herron
and Michod, 2008). In this evolutionary hierarchy of life, a significant
step is that of association of algae and bacteria. To completely understand
the ecophysiology and symbiosis between algae and bacteria, thousands
of years of time scale needs to be breached to reach their evolution. This
evolutionary journey of algae and bacteria and their symbiosis taken
together shall be a fair opening deliberation in this review.

2. Evolution of bacteria and algae

The evolution of life is one of themost intriguing research questions
that is still in shade. But a prominent bright spot in the overarching
shade is a general agreement on the role played by algae and bacteria
in earth's evolution. One of the most potential reasons for existence of
human or multicellular organisms on earth is due to the presence of
archaea, bacteria, cyanobacteria and subsequently eukaryotic algae.
These prokaryotic organisms (bacteria and cyanobacteria), which are
the linchpin in the formation of eukaryotic algae and their subsequent
interaction with each other, are discussed vividly in the subsequent
sections.

2.1. Bacterial evolution benefitted algae

Earth is 4500million years old and Earth's atmospherewas devoid of
oxygen at origin. Oxygenic photosynthesis is the main reason for the
present day atmosphere (Blankenship and Hartman, 1998). According
to Earth scientists, life would have originated approximately 3800
million years ago (mya) in a hyperthermal environment as Earth and
its oceans were boiling at about 100 °C. But whether life originated in
oceans (Nisbet and Sleep, 2001), hydrothermal vents (Martin et al.,
2008), rock environment or anoxic terrestrial geothermal fields
(Mulkidjanian et al., 2012) is a question under serious debate. Nonethe-
less, it is clear that first organisms in Earth were perhaps prokaryotic
thermophiles capable of living in a methane and sulfur atmosphere,
crucially a life without oxygen (Gribaldo and Brochier-Armanet, 2006;
Sleep, 2010). By 3500 mya, Earth has stabilized considerably from
multiple explosions and bombardment resulting in photosynthesis,
first anoxygenic and much later, oxygenic (Arndt and Nisbet, 2012;
Sleep, 2010; Zahnle et al., 2010). This early phase in evolution could
be understood from tracking the availability of atmospheric oxygen.
Geological features suggestive of oxygen, such as red beds, lateritic
paleosols, and sedimentary sulfate deposits, indirectly provide ample
proof for atmospheric oxygen (Kopp et al., 2005; Rasmussen et al.,
2008; Tomitani et al., 2006). The accumulation of oxygen occurred in
two phases. Atmospheric oxygen increased gradually from void to
1–2% around 2400–2000 mya (Rasmussen et al., 2008). Scrutiny of
oldest morphological fossils suggests that cyanobacteria originated
around 2150 mya coinciding with the great oxygenation event (GOE).
Although eukaryotes are known to have emerged 1780–1680 mya
ago, levels of oxygen were stable perhaps due to trapping of oxygen
by ferrous forming magnetite and other formations even by 850 mya
(Holland, 2006). The second subsequent rise in oxygen to ~20%
observed in today's atmosphere is credited to the emergence of
photosynthetic eukaryotes such as algae and increased photosynthetic
productivity by lichens colonizing land masses. This eventually acceler-
ated the degradation of rocks, thereby releasing fertilizing minerals
around 800 mya which increased oxygen concentration in the Carbon-
iferous era (360–300 mya) coinciding with the existence of vascular
plants and increased carbon sink (Holland, 2006; Rasmussen et al.,
2008). It is also widely accepted that cyanobacteria have played a
major role in evolution of eukaryotic algae through the primary
endosymbiosis (PE) event, in addition to their contribution to GOE. In
PE, a heterotrophic eukaryotic ancestor engulfed a cyanobacterium
and retained it as an organelle thereby enabling photosynthesis in
eukaryotes (Curtis et al., 2012; Yoon et al., 2004). The host cell which re-
ceived the cyanobacteriumwas earlier thought to have originated from
bacteria, but increasing evidence suggests that, it was indeed an archaea
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(Williams et al., 2013). Cyanobacteria were directly responsible for this
oxygenic environment aswell as for the birth of photosynthetic eukary-
otes, and indirectly responsible for evolution of various aerobic organ-
isms, including humans. Hence, from the perspective of this review,
the paleo- and meso-proterozoic eras are of utmost relevance, where
primary and secondary endosymbiosis (SE) is believed to have taken
place (Yoon et al., 2004).

Cyanobacteria are considered to be algae by phycologists because of
phenotypic similarities but the advent of molecular phylogeny and
polyphasic studies proved their bacterial ancestry. Hence, the term
cyanobacteria was previously used interchangeably with the term
blue-green algae (Wilmotte, 2004), but the correct term is now accept-
ed to be cyanobacteria. Apart from cyanobacteria, other prokaryotes
which perform tetrapyrrole-based photosynthesis are proteobacteria
(purple bacteria), heliobacteria, chloroflexi (green non-sulfur bacteria)
and chlorobi (green sulfur bacteria). Cyanobacteria possess two types
of photosystems (type I & II) and perform oxygenic photosynthesis as
mentioned earlier. The other four groups have either of these two
photosystems and perform anoxygenic photosynthesis. The defining
moment in photosynthesis is the ability to use water as a source of
hydrogen in the photosynthetic reaction, not the evolution of
oxygen. Thus, photosynthesis originated in the anoxygenic form,
perhaps in archaea, using a primitive photosystem I-like reaction
center. Oxygenic photosynthesis is believed to have originated in
the cyanobacterial lineage under ultra-violet light conditions
prevailing then, in addition to depletion of electron donors. From this
ancestor, photosynthesis possibly spread to other lineages through
lateral gene transfer.

A simplistic view of algal–bacterial evolution and their role in endo-
symbiosis events is portrayed in Fig. 1. Cyanobacteriumwas retained as
Fig. 1. A pictorial representation of evolution of algae after primary (PE) and secondary endosy
indicate the red lineage respectively. Thedashed lines indicate thepresenceof sub-groupswithi
occurred. The individual images used in this figure are only representative and some of these i
primary plastid over time in three distinct evolutionary lineages — red
algae, green algae and glaucophytes. Study of plastid multi-gene
phylogeny using molecular clock analyses placed the origin of first
alga before 1558 mya (Parfrey et al., 2011; Yoon et al., 2004). Later, a
series of secondary endosymbiosis events led to diversification of this
ancestor (Curtis et al., 2012; Li et al., 2006). Therefore, the role of bacte-
ria in this ancestral algal genesis is not questioned. But considering the
fact that heterotrophic bacteria are always associated with algae in na-
ture, the role of these bacteria during various secondary endosymbiosis
events needs to be questioned. The interplay between cyanobacteria,
algae, bacteria and protists in a series of endosymbiotic events has
been discussed in several excellent reviews (Decker and Holde, 2011;
Keeling, 2009; Prechtl et al., 2004; Thompson et al., 2012; Tomitani
et al., 2006; Vaishnava and Striepen, 2006). Moreover, evidence of hor-
izontal gene transfer from bacteria and archaea to algae to help adapt to
extreme environments is also emerging (Schönknecht et al., 2013).
Hence, the holistic role of ectosymbiotic heterotrophic bacteria which
surround the present-day algae in these endosymbiosis events is not
well documented, apart from a few studies reviewed below.

2.2. Evolution of multicellularity in algae — do bacteria play a part?

After these endosymbiotic series, algaemoved a level higher in com-
plexity from cellular autonomy to cellular cooperation, i.e. division of
labor within cells (Herron et al., 2009; Kirk, 2005). Although various
studies were conducted to elucidate each step towards multicellularity
in volvocine algae (Herron et al., 2009; Kirk, 2001), there are hardly
any studies on the role of ectosymbiotic bacteria which inhabit the cell
wall and cell sheath in these algae. Fig. 2 shows the overwhelming
presence of bacteria associated with various multicellular algae and
mbiosis (SE) events. The green branches indicate the green lineage while the red branches
n the respective lineageswhere primary and/or secondary endosymbiosis is known tohave
mages are accessed through Creative Commons Attribution License.



Fig. 2.Confocal laser scanning imagesmergedwith differential interference contrastmicroscopic images of severalmulticellular algae and their closest unicellular relative. The strainswere
stainedwith SYBR green and pseudo-colored in yellow. The images reveal the presence of bacteria in all strains, including V. carteri (B), especially inflagellates and outer layers of ECM (A&
B) whereas the gonidia do not have significant bacterial presence on their outer surface (C). The scale bar represents 5 μm.
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their closest unicellular relative, Chlamydomonas. Recently, Kawafune
and colleagues showed the presence of bacterial endosymbionts in
two volvocine green algae: unicellular Carteria cerasiformis and
multicellular Pleodorina japonica. Definitive evidence on the identity
and molecular phylogenies of endosymbionts were unknown earlier
although they were discovered within the cytoplasm of Volvox and
other volvocaleans, as early as 1970 in case of Volvox. The endosymbi-
onts belong to hydra group within the Rickettsiaceae family, the peren-
nial endosymbionts of non-arthropod hosts (Kawafune et al., 2012,
2014). Members of Rickettsiaceae family also include the bacterial
genus Rickettsia that are associates of invertebrates like blood-feeding
arthropods and become pathogenic when transmitted to vertebrates
(Andersson et al., 1998; Perlman et al., 2006). It is also well-known
that the members of Rickettsiaceae family serve as the origin of mito-
chondria in eukaryotes, a defining event in their evolution (Andersson
et al., 1998; Emelyanov, 2001; Gray et al., 1999). Considering the
increasing evidence of bacterial endosymbionts in multicellular algae,
the role of bacteria in multicellularity can no longer be ignored. This
leads us to question the theory of evolution of multicellularity. For
example, one of the crucial steps in evolving to multicellularity is the
conversion of cell wall structures to extracellular matrix (ECM), which
constitutes 99% of cell volume in Volvox. This evolution not only gave
an advantage of hosting large gonidia (reproductive cells) inside ECM,
but also the competitive advantage over smaller algae for better access
to nutrients (Kirk, 2005). Since bacteria are always associated with
algae in the cell wall surface, corroborating with the evidence of
bacterial endosymbionts, several questions arise. Were bacteria
engulfed during the inversion process where cytoplasmic bridges play
a critical role? Did cell-wall adhering bacteria help in creating speciali-
zations which keep individual Gonium cells together, that later
transformed into ECM in Pandorina and Volvox? These are some of the
unanswered questions in evolutionary biology of algal–bacterial inter-
actions in algal multicellularity (Kirk, 2005; Nozaki, 1990).
These questions could be answered if the diversity of algae-
associated bacterial community is ascertained in these lineages.
Multicellular volvocine algae, red algae, brown algae, and plantae have
independent origins for multicellularity, which occurred about
1000 mya. However, the bacteria associated with most green algae
and plants consist of core group of genera called the Plant Growth
Promoting Bacteria (PGPB). This term was first used by Kloepper and
colleagues as Plant Growth Promoting Rhizobacteria (PGPR), which
was subsequently expanded for other bacteria as well (Bashan and
Holguin, 1998; Kloepper et al., 1980). Earlier studies show that specific
bacterial genera are associated with each green alga vindicated by the
diversity of secretory products. Our phylogenetic study demonstrates
that an overarching clade of bacteria such as proteobacteria and
bacteroidetes are more likely to be associated with green algae than
other bacterial phylotypes. Moreover, these bacteria are also functional-
ly equipped to be associated with green algae (Ramanan et al., 2015).
This clade of bacteria associated with green algae (PGPR &
Bacteroidetes) are similar and even in some cases identical, as in the
case of Rhizobium (Kim et al., 2014a), and perform similar functions to
that of plant–bacteria interactions. In the meantime, it is widely
known that algae are ancestors of land plants, which originated
relatively recently at approximately 450 to 470 million years ago
(mya) (Bhattacharya and Medlin, 1998; Palmer et al., 2004). Algae
have also played a defining role in animal evolution (Ni et al., 2012).
Hence, another compelling query to be answered on coevolution is
that whether some of the bacterial genera like Rhizobium and Rickettsia,
for instance, continued to associate with the highly evolved descendant
of algae and arthropods, respectively. Even though the role of algae and
bacteria in evolution has never been questioned, their collective role is
yet to be determined. In conclusion, both algae and bacteria conceivably
coevolved from prokaryotes to form unicellular eukaryotes to multicel-
lular higher plants and animals. In this context, studying both organisms
and their interactions in unison from ecology to present day
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applications is more enriching and fulfilling than engaging in their own
individual subsistence. As bacteria and algae have coevolved, along the
way they have formed a diversity of interactions, some of which define
their respective habitats (Ashen and Goff, 2000). For more detailed dis-
cussion on evolution of algae and bacteria, the readers are requested to
refer on Refs. Bhattacharya and Medlin (1998), Blankenship and
Hartman (1998), Herron and Michod (2008), Keeling (2009), Li et al.
(2006), Ni et al. (2012), Rasmussen et al. (2008), Tomitani et al.
(2006), Vaishnava and Striepen (2006), Williams et al. (2013), and
Yoon et al. (2004).

3. Ecology of algal–bacterial interactions

3.1. Defining types of association

Algal–bacterial interactions cover the whole range of symbiotic
relationships which are deemed possible. Algae, heterotrophic bacteria
and archaea are the primary producers and decomposers, respectively,
making them the structural pillars of the ecosystem and its foremost
functional entities. However, most types of interactions between algae
and bacteria in the planktonic zone are scantily studied and those
studied often reflect the importance of taking up such studies. This is
because of the onerous task of separating the partners which are
naturally bound to each other. Axenic cultures of algae are difficult to
isolate, maintain and study because of their completely different
physiology and metabolism compared to their xenic counterparts,
which are always laden with bacteria (Amin et al., 2015; Cho et al.,
2013, 2015b).

Therefore, direct evidence on the amount of carbon and nitrogen
exchange that takes place between a cyanobacteriumandananoplankton
was established only by 2012. This relationship is believed to be as impor-
tant to vertical flux of carbon and nitrogen as their ancient, omnipresent
mutualism (Thompson et al., 2012). Although the primary function of
heterotrophic bacteria is decomposition, it is now accepted that some
bacteria also play a part in algal growth promotion, establishing mutual-
istic interactions. This paradoxical dual function often complicate such
studies on interactions, requiring a complex study on the complete set
of ecological functions of each partner in the aquatic food chain. The
emerging studies on the modes and factors influencing interactions also
question conventional wisdom, with most studies pointing to relation
continuum. Hence, this section will dwell on those emerging studies on
algal–bacterial modes of interactions which would have enormous
ecological significance in the future, as well as relevance for the algal
biotechnology industry.

3.1.1. Mutualism
There aremany examples of mutualism between algae and bacteria,

the one mentioned before is the first study to conclusively prove single
cell interactions. Other studies have also revealed the role of mutualism,
in some cases obligate relationships, for each other's subsistence. Croft
et al. (2005), made a strong case for mutualism in Vitamin B12

auxotrophs, when they proved that bacteria supplied Vitamin B12 to
algae in exchange for fixed carbon. Further studies by this group
validated the evolutionary importance of this mutualism (Helliwell
et al., 2011). Facultative relationship was also observed between
Chlamydomonas reinhardtii, the model green alga encoding both Vita-
min B12-dependent (METH) and -independent (METE) methionine
synthases, and heterotrophic bacteriawhich delivers Vitamin B12when-
ever required, indicating a widespread distribution of such relationship
(Kazamia et al., 2012b). The supply of Vitamin B12 by an associated
bacterium results in repression of C. reinhardtii METE gene expression
and subsequent utilization of Vitamin B12 supplied, indicating an oppor-
tunistic relationship. C. reinhardtii exuded photosynthetic carbon is not
taken up by the bacterium, therefore the nature of the relationship is
still unclear. But mutualism is not limited to micronutrient supply
from bacteria alone (Droop, 2007).
Many studies have highlighted the role of Mesorhizobium and
Azospirillum in algal growth promotion and vice-versa (Gonzalez and
Bashan, 2000; Hernandez et al., 2009; Watanabe et al., 2005). One of
the most important implications of these studies, especially by Bashan
and colleagues, is that algae are dependent on macronutrients such as
nitrogen (N) since they do not possess nitrogen fixing mechanism and
that is supplemented by bacteria, especially in oligotrophic environ-
ment. A recent study conclusively proved the case of mutualism
between a well-known PGPB, Rhizobium sp. and wastewater derived
algae, Chlorella vulgaris, highlighting the importance of this mutualism
in freshwater (Kim et al., 2014a). However, considering the ecological
structure and function, the major question which arises is the need for
bacteria to benefit algal growth, while being a decomposer. Mutualism,
as the word indicates is not a one way exchange, rather the bacteria
stand largely benefitted by being associated with algae, a blessing in
oligotrophic environment. We demonstrated that algae supply fixed
organic carbon to an artificial consortium ofmutualistic bacteria,mostly
belonging to PGPB, and bacteria in return, supply dissolved inorganic
carbon and low molecular organic carbon for algal consumption (Cho
et al., 2015b). Mutualism is not limited to unicellular microalgae but
also prevalent in macroalgae, in some cases they are endosymbiotic
(Hollants et al., 2011). Such exchanges between biotic communities in
aquatic ecosystems have a huge role in cycling of nitrogen, sulfur,
carbon and phosphorus (Amin et al., 2009; Ask et al., 2009; Azam,
1998; Cho et al., 2015a; González et al., 2000; Grossart et al., 2006;
Grover, 2000; Oh et al., 2001b). The mechanism of such mutualistic
exchanges is covered extensively in Section 3.3.

3.1.2. Commensalism
Commensalism is a relationship in which only one partner benefits

unlike mutualism. However, there is a very thin line that separates
mutualism and commensalism. It is now understood with most cases
of commensalism, mutualism, and parasitism that the thin line which
not only delineates but also determines these relationships is environ-
mental factors. And these interactions are a continual and not discrete
interface (Ewald, 1987; Hu et al., 2010; Johnson et al., 1997; Karst
et al., 2008; Neuhauser and Fargione, 2004; Valiente-Banuet and
Verdú, 2008; van Ommeren and Whitham, 2002). From this perspec-
tive, most algal–bacterial associations studied till date are either mutu-
alistic or parasitic; the intertwining relationship is almost deficient in
literature. Although there are numerous studies which describe the
change in community structure of algae and/or bacteria depending
upon environmental factors (Bruckner et al., 2008; Carrillo et al.,
2006; Cole, 1982; Interlandi and Kilham, 2001; Klepac-Ceraj et al.,
2012; Mayali and Doucette, 2002; Sher et al., 2011), specific
algal–bacterial interactions are viewed as discrete interactions and the
continuum concept has not been applied. Only a handful of studies
demonstrate, only partially, the role of nutrient availability in determin-
ing the relationship between algae and bacteria (Gurung et al., 1999;
Kudela and Dugdale, 2000; Leung and Poulin, 2008; Liu et al., 2012;
Sherr et al., 1988). An excellent early treatise on algal–bacterial compe-
tition and commensalism reveals the role of phosphorus (Bratbak and
Thingstad, 1985). Other studies have indicated that phosphorus limited
algae outcompete themselves allowing bacterial commensals to
outnumber algae. Similarly, the role of nutrients, N:P ratio, carbon and
light intensity in regulating the growthof these organisms in association
have been partly discussed (Grover, 2000; Gurung et al., 1999; Currie
and Kalff, 1984). However, mechanism or factors behind an apparent
shift frommutualism to parasitismand vice versa via commensalism re-
mains just a theory, although algae and bacteria serve as an excellent
model system. Besides, there is a strong debate on whether mutualistic
relationships become parasitic over time and later live autonomously,
challenging the continuum concept (Sachs and Simms, 2006). In any
case, commensalism has not been in the forefront in algal–bacterial in-
teractions, which in itself raises the question of whether the moment is
too fleeting. Or as a an article pointed out, commensals could be



Fig. 3. The algal phycosphere and its components. Recoloured SEM images of axenic
C. vulgaris (A) show the presence of cell sheath in dividing cells, whereas xenic
C. vulgaris houses bacteria on the cell wall (white arrow) and beneath the cell sheath
(red arrow) (B).
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considered as non-interacting partners and therefore difficult to prove
absence of interaction (Zapalski, 2011). Our latest study on the
phycosphere bacterial diversity shows evidence of certain bacteria
which might be commensals harboring the algal sheath for carbon
and shelter (Cho et al., 2015b). From the studies available it can be spec-
ulated that commensalism though an integral part of the relationship
continuum is totally determined by environmental factors, and hence
not highlighted while documenting algal–bacterial interactions
(Hirsch, 2004; Zapalski, 2011). Therefore, studying algal–bacterial com-
mensalism might as well shed light on true validity of the continuum
concept.

3.1.3. Parasitism
Unlike mutualism and commensalism, parasitism is relatively well-

studied. Many bacteria are known to negatively affect algae and hence
very encouraging for scientists studying microalgae and cyanobacterial
bloom control (Kim et al., 2008; Lee et al., 2010; Lovejoy et al., 1998;
Wang et al., 2010). Moreover, algae also are parasitic, often to their
higher taxa or their own counterparts (Goff and Coleman, 1984; Goff
et al., 1996; Sachs and Wilcox, 2006). In fact, red algae are considered
to be model parasites (Goff et al., 1996). About 10% of known red
algae are parasitic and the mechanism of this parasitism is adequately
established (Hancock et al., 2010). However, very few studies have
been conducted on algal parasitism on bacteria and vice-versa, their
mechanism of elimination and its ecological reasoning. These studies
demonstrate that the algal cell lysis is achieved through a mechanism
similar to plant–pathogen interaction. Glucosidases, chitinases,
cellulases and other enzymes that help degrade plant cell wall are also
involved in the lysis of algal cells (Afi et al., 1996; Arora et al., 2012;
Wang et al., 2010). In fact, this phenomenon of algal cell wall lysis is
not only limited to bacteria, but also to fungal and mollusk enzymes
(Nikolaeva et al., 1999). Apart from actual lysis of cells and utilizing
the intracellular compounds as nutrients by bacteria and fungi, second
form of parasitism is competition for existing nutrients with algae
resulting in slower growth rates of algae, eventually after several gener-
ations, outcompeting algal existence in that environment. Yet another
version of parasitism and competition is altruism, either self-driven or
driven by the beneficiary, which would then closely resemble competi-
tion (Doncaster et al., 2013). Both parasitism and competition were
manifested in a recent study on algal-associated fungi and bacterium,
respectively (Cho et al., 2015b). Besides, such parasites are useful for
many applications in algal and industrial biotechnology, which will be
discussed in detail in following sections (Bhat, 2000; Dahiya et al.,
2006). Hence, it is imperative to specifically learn the ecological and
evolutionary significance of such degradation, and algal–bacterial
parasitism, in general.

A general agreement for most associations is that they often happen
in close proximities. For example, parasitic bacteria are usually present
in the algal cell wall or its associated sheaths, to facilitate cell wall
degradation (Wang et al., 2010). Besides, any association is a function
of its microenvironment and the surrounding macroenvironment,
which also strongly supports the continuum concept (Ewald, 1987;
Johnson et al., 1997; Karst et al., 2008; Sachs and Wilcox, 2006).
Hence the habitats play an important role in ecophysiology of these
organisms in an association.

3.2. Habitats

It is widely known that algae, bacteria and cyanobacteria live in
almost every niche of this Earth – from Antarctic ice to hot springs
(Castenholz, 1976; Sakai et al., 1995; Thomas and Dieckmann, 2002),
from high altitudes to deep ocean sediments (Ask et al., 2009;
Jørgensen et al., 1992; Schippers et al., 2005), from plant roots to leaves
and branches (Cocking, 2003; Hoffmann, 1989; Madhaiyan et al., 2006;
Neustupa and Škaloud, 2008; Pitman, 1982; Rovira, 1965) – and con-
ceivably beyond. However, this section will deal with two levels of
habitats — an intimate interaction of algae and bacteria in the
‘phycosphere’ and a collective interaction of algae and bacteria with
organisms in some defining habitats. Algae and bacteria together play
a wide range of roles with other organisms in every ecosystem
(Grossart et al., 2006) and it would be beyond the scope of this review
to deal with all major ecosystems. Hence, this section will define some
interesting and well-known habitats in terrestrial, aquatic and extreme
ecosystems.

3.2.1. Phycosphere — an intimate microenvironment
The term ‘Phycosphere’ used for the first time in 1972 (Bell and

Mitchell, 1972), defined as “a zone that may exist extending outward
from an algal cell or colony for an undefined distance, in which the
bacterial growth is stimulated by the extracellular products of the
alga” is used sparingly since. Studies from our laboratory (Cho et al.,
2015b; Kim et al., 2014a; Lee et al., 2013; Ramanan et al., 2015) and
elsewhere (Sapp et al., 2007) suggest that phycosphere is one of the
most ignored and distinctive habitat for bacteria. Scanning Electron
Microscopy (SEM) images show axenic C. vulgaris (Fig. 3A) and xenic
C. vulgaris with bacteria on the cell wall and beneath the cell sheath
(Fig. 3B). The phycosphere is equivalent to an oasis for heterotrophic
bacteria, where high concentrations of fixed organic carbon is excreted
for consumption, compared with the vast oligotrophic surroundings in
ocean and freshwater. This demands a question of why precious fixed
organic carbon is wasted by microalgae through excretion. Most



20 R. Ramanan et al. / Biotechnology Advances 34 (2016) 14–29
plausible explanation is provided by studies which proved increased
excretion as consequence of increased exposure to light, especially in
the planktonic region as inorganic carbon is non-limiting and serves
as a sink to prevent photoinhibition (Cherrier et al., 2014; Leboulanger
et al., 1998). Other studies have also proved that algae abandon Redfield
ratio under nitrogen depletion and increase organic carbon secretion,
especially as RuBisco's oxygenase activity fixed glycolate (Granum
et al., 2002). Overall, precious fixed carbon is released for a reason by
algae, but eventually benefitting bacteria. Recent studies have demon-
strated that such benefits are not bestowed upon all invaders. Only
bacteria which possess unique abilities are able to survive in this
microscopic yet organic rich region.

Studies indicate that specific functional types of bacteria are asso-
ciated with most algae, which exploit this unique habitat, in some
cases also helping algal growth, in a classic case of mutualism (Kim
et al., 2014a; Ramanan et al., 2015). These functions include ability
to degrade complex polysaccharides, to stave off competition, and
provide beneficial attributes to algae. And this requires enormous
metabolic activity linked to a complex signaling network to maintain
the relationship, backed by fluid genetic machinery. A detailed de-
scription of this mechanism is outlined in following sections. Since
this close association involves sharing metabolic potential of each
organism, in most cases, bacteria and algae define the survival char-
acteristics of each other in that environment through specific inter-
actions, viz., mutualism, commensalism or parasitism, as discussed
earlier (Doucette, 1995; Wang et al., 2010). Therefore, a region
which hosts such a vital relationship which influences nutrient cy-
cling needs higher attention than a scant mention in few research
studies.
3.2.2. Lichens
A classic example of algal symbiosis is considered to be lichens.

Lichens and their importance have been extensively discussed
(Lutzoni and Miadlikowska, 2009; Lutzoni et al., 2001). Studies suggest
that lichen can be the determinants of ecosystem health by providing
specific signatures on the habitat they live in (McCune, 2000; Stengel
et al., 2004). However, a relationship which occurs in lichens has not
warranted attention for reasons unknown (Hodkinson and Lutzoni,
2009). Only lately, the role of bacteria in lichens was recognized and
has added a new dimension to its studies (Hodkinson and Lutzoni,
2009; Hodkinson et al., 2012). Bacterial diversity in lichens is predomi-
nantly Rhizobiales but also encompass members of Acidobacteriaceae,
Acetobacteraceae and Brucellaceae. As discussed elsewhere, Rhizobiales
are also predominant in the algal phycosphere, help enhance algal
growth and hence might have a major role to play in lichen physiology,
in symbiosiswith algal partner. Recently,microbiome studies on lung li-
chen, Lobaria pulmonaria, show that the lichen hosts algal photobiont
(Dictyochloropsis reticulata) and cyanobacterium Nostoc. Comparative
omics analyses of L. pulmonaria elucidated that bacteria present in the
lichen aid algae by supplying Vitamin B12, nutrients, growth hormones
and conferring resistance to pathogens (Grube et al., 2015). Moreover,
the lung lichen sampled from three different locations share a core
fraction of microbiome, indicating that these symbiotic functions are
not isolated (Aschenbrenner et al., 2014).

Bacterial symbionts in foliose lichen Peltigera membranacea are
known to be involved in phosphate solubilization, possibly resulting in
algal growth promotion (Sigurbjörnsdóttir et al., 2015). Finally,
bacterial community structure is also influenced by the nature of the
photobiont, thus proving that algae and bacteria share a symbiotic
relationship affecting each other's physiology and existence, therefore
collectively affecting lichen survival. Thus, collective effect of algae and
bacteria in lichen survival is unquestioned which indicates the ecologi-
cal significance of these interactions, as lichens are known to be one of
the oldest symbiotic relationships (Hodkinson et al., 2012; Lutzoni
et al., 2001).
3.2.3. Corals
Corals are one of themost dynamic and aesthetic marine ecosystems.

Corals resemble epiphytic lichens in many ways. Firstly, corals have a
microbial community comprising algae, fungi, bacteria and archaea, sim-
ilar to lichens. Secondly, coral is very sensitive to environmental changes
and hence act as an indicator of ecosystem health (Gascuel et al., 2005;
Hoegh-Guldberg et al., 2007; Hughes, 2002; Sheppard and Loughland,
2002). Thirdly, algae have the pivotal role in lichens and corals, supplying
photosynthetically derived carbon to sustain both ecosystems. Endosym-
biosis between corals and algae is well-known, in fact algae incorporates
the coral reefs with its vivid beauty (Brown et al., 1999; Douglas, 2003;
Hughes et al., 2003). Algae in coral, popularly called as zooxanthellae,
are unicellular dinoflagellates, mostly belonging to Symbiodinium genus.
Corals help algae to fix carbon by acidifying the microenvironment and
consume the photosynthetically derived carbon (Barott et al., 2015).
Algal endosymbiosis also seems to play a major role in stress resistance
to environmental changes among coral reef community (Wooldridge,
2009). Overall, it is believed that there are several modes of interactions
between algae and coral (McCook et al., 2001), and hence highlight the
role of algae in this ecosystem. Morphologically, dinoflagellates are
housed inside the gastrodermis of coral animal cells, which together is
known as symbiosome. The bacteria are located on the surface of the
host cell (mucus layer), gastrodermis and calcium carbonate skeleton,
but dominated by distinct populations (Rosenberg et al., 2007). Many
studies on analysis of bacterial diversity in different corals from different
geographic regions revealed that most dominant bacteria belonged to
gammaproteobacteria followed by alphaproteobacteria, cyanobacteria,
firmicutes and bacteroidetes (Bayer et al., 2013; Littman et al., 2009;
Pantos et al., 2015). The overall bacterial diversity is quite similar to
that of phycosphere bacterial communities in freshwater algae
(Ramanan et al., 2015). Meanwhile, analysis of bacterial communities in
corals under varying stages of bleaching demonstrated a subtle change
at genus level, with Vibrio and Acidovorax dominating in the pre-
bleached and bleached corals, respectively. The emergence of specific
clades of Vibrio is an indicator of coral bleachingwhich results in possible
breakdown in the symbiotic relationship between algae and the host
(Bourne et al., 2007, 2009; Tout et al., 2015). Many studies also prove
that algae and bacteria act in unison to maintain host health as any
disturbance in either community leads to coral mortality (Barott et al.,
2011, 2012; Reshef et al., 2006; Rosenberg et al., 2007).

The mechanism of symbiosis between algae and bacteria in coral was
proved by one of the earlier studies which elucidated that algae supply
oxygen at very high concentration, often super-saturating (200% satura-
tion), aiding host and prokaryote growth in addition to preventing infec-
tious organisms (Revsbech, 1995). The algae in the symbiosome help
bacteria in the coral tissues, while cyanobacteria in the carbon skeleton
aid their symbiotic bacterial partner (Rosenberg et al., 2007). Bacteria
on the other hand may provide nutrients including nitrogen possibly to
host and algae, as well as protecting them from pathogens by producing
antibiotics and by competition, thereby safeguarding symbiosome func-
tion and eventually preventing coral bleaching (Lema et al., 2012;
Pantos et al., 2015). Summarizing the algal–bacterial interaction in coral
with recent evidence, it is concluded that algal exudates in coral are prov-
en to be directly beneficial to bacteria; the bacteria are not yet proven to
be directly beneficial to algae alone, rather to the host and algae taken
together. Therefore, algal–bacterial interaction in coral is both special
and complex. Although it can be safely concluded that type and health
of algae–bacterial community would determine the survival of one the
most magnificent ecosystems in the world, more research is needed on
definitive roles of each of these partners.

3.2.4. Extreme environments
Algae, cyanobacteria and bacteria exhibit a strong resistance for a

wide range of extreme habitats as mentioned before. An interesting
study showcased the survivability of algae, bacteria and cyanobacteria
in outer space environment and under UV radiation for a long time



21R. Ramanan et al. / Biotechnology Advances 34 (2016) 14–29
(548 days) (Cockell et al., 2011). The study demonstrated that
phototrophs survive in natural biofilms formed on the rocks when
exposed to low-Earth orbit without known carbon and energy source,
adding a new dimension to studies on growth of algae and bacteria in
extreme environment. In the Antarctic sea-ice, it was proved that
algae and bacteria coexist to fight high salinity, lower available
free-water, extremely low temperature, low light and inorganic carbon
conditions, and even high UV-radiation. Both bacteria and algae cope
with such extreme conditions by secreting high levels of EPS, including
organic carbon as seen earlier. Special ice-active substances like glyco-
proteins, which change the physicochemical surroundings of the imme-
diate environment, are also secreted. Another possible mode of survival
would be to alter each other's metabolism to suit the partner needs, es-
pecially during winter trapping in ice sheets (Thomas and Dieckmann,
2002). In such extreme environments, mutualistic arrangement is the
only viable survival strategy. Such arrangement is also seen in a vastly
dissimilar habitat, the coastal range of Atacama Desert, the driest and
oldest desert on Earth. Here, microalgae and cyanobacteria formed
biofilms on spider-webs with coastal water evaporation being the sole
source of nutrients (Azua-Bustos et al., 2012). Another study showed
that algae and cyanobacteria adapted to the extreme environment in
Atacama Desert by switching to endolithic habitats within gypsum
deposits in organized succession. The lower cyanobacterial layer was
in close association with sepiolite inclusions with little supply of water
and an upper algal layer acted as buffer to heat and evapotranspiration.
Carotenoids and scytonemin were produced by upper algal and lower
cyanobacterial layers respectively to prevent photoinhibition and oxi-
dative damage. The study also found heterotrophic bacterial communi-
ties such as proteobacteria and actinobacteria associated with the
endolithic communities comprising dominant cyanobacterial lineages,
Chroococcales and Synechococcales, and unclassified algae. In such an ar-
rangement, the role of cyanobacteria might have been to supply nitro-
gen, and minerals through mineralization, while the algal–bacterial
communitywould have buffered the photoinhibition and evapotranspi-
ration by EPS production and recycling. Taken together, algal–bacterial
interaction to produce EPS, packed and organized community structure
within the endolithics, and production of anti-oxidants would have
helped the community to sustain in such extreme habitat (Wierzchos
et al., 2015). Genome of extremophilic red alga, Galdieria sulphuraria,
which lives in hot, metal-rich, toxic and acidic environments, revealed
that horizontal gene transfer from bacteria facilitated its survival over
millions of years (Schönknecht et al., 2013). This pathbreaking study
highlights both association and eventual evolutionary inheritance
from bacteria to algae with long-term implications for understanding
algal–bacterial interactions in extreme environments. These studies
also give insights on the possibility of convergent evolution which
might have paved way for land plants (Azua-Bustos et al., 2012;
Wierzchos et al., 2015). Thus these extreme habitats warrant attention
as natural mesocosms, providing evidence on organismal evolution
and modes of survival.

3.2.5. Marine phytoplankton
One of the most ubiquitous interactions in the marine ecosystem is

the Roseobacter–algae interaction. Members of the Roseobacter lineage
play a major role in biogeochemical cycling, especially carbon and
sulfur, by oxidizing greenhouse gas carbon monoxide and producing
dimethylsulfide, both of which enormously influence global climate
(Geng and Belas, 2010). The most interesting aspect from the pretext
of this review is that they utilize algal osmolytes to produce these
compounds. Roseobacter denitrificans is the first member of this lineage
to be sequenced and they generate energy using anoxygenic photosyn-
thesis process, and in the presence of oxygen (Wagner-Döbler and
Biebl, 2006). Not only does this organismpossess ancient photosynthet-
icmachinery, but is also known to be associatedwith algae ubiquitously,
possibly throwing light on the age of such associations. Studies on
the troponoids produced by marine Roseobacter lineage, coined
Roseobacticides lately, show that these bacteria have a robust
quorum-sensing based gene-regulation systemwhich responds to envi-
ronmental hues and dictates their relationship with algae (Geng and
Belas, 2010). The mechanism of this ubiquitous interaction is discussed
in detail in the following section.
3.3. Mechanism of interactions

The interaction between marine algae, Emiliania huxleyi, a single-
celled phytoplankton ubiquitously distributed from tropic to sub-Arctic
waters, possessing highly ornamental calcite shields called colloliths,
and its associated bacterium of Roseobacter lineage is the most widely
studied. Mechanism of their interaction is among the most complete
and well-understood. The algae are subject to frequent upheaval and
decline in population, succeeding every algal bloom. When algal
population decline, members of the population release cell wall
degradation products, such as lignin and its degradation by-products,
such as p-coumaric acid. It is established that members of Roseobacter
lineage change fromamutualistic partner upon p-coumaric acid release,
called an elicitor, to an opportunistic pathogen by releasing 11 types of
troponoids, which eventually kill algae, and switch the Roseobacter
member, from a sessile lifestyle on the algal cell wall to motile phase
(Geng and Belas, 2010; Sule and Belas, 2013; Wagner-Döbler and
Biebl, 2006). Moreover, it was demonstrated that in the brief period of
high algal growth, Roseobacter not only serves as a perfect mutualistic
partner by supplying vitamins and phytohormones to algae, but also
provides antibacterial safeguards towards non-roseobacters, in cohe-
sion with algae (Sharifah and Eguchi, 2011). Besides, the precursors of
troponoids are synthesized from algal derived carbon, which algae re-
leases during their mutualistic relationship. Thus, algae synthesized
molecules that serve Roseobacter member during mutualism are
diverted for toxin synthesis during parasitism (Seyedsayamdost et al.,
2011). This interaction is the closest example of classic continuum
theory between algae and bacteria, not proven to be driven by environ-
mental factors, but rather surprisingly determined by algal molecules
and growth phase.

However, this mechanism is not the only possible strategy prevalent
in all interactions. The mechanism of interaction is species specific as
the microenvironment of each alga is different. Modes of interactions
between algae and bacteria and their interrelation with the environ-
ment are depicted in Fig. 4. In the mechanisms proven so far, carbon
and macro- and micro-nutrients seem to play a central role. Studies
show micro-nutrients like Vitamins (Croft et al., 2005; Kuo and Lin,
2013; Teplitski and Rajamani, 2011), macronutrients like nitrogen and
carbon (Bolch et al., 2011; Kazamia et al., 2012b; Kim et al., 2014a;
Teplitski and Rajamani, 2011) and phytohormones (Teplitski and
Rajamani, 2011) usually exchange between algae and bacteria. A recent
study proved that Indole Acetic Acid (IAA) was transferred to algae in
exchange for organosulfur compounds by Sulfitobacter, another
member of Roseobacter clade. The study conclusively proved that both
algae and bacteria altered their metabolism to suit each other's needs,
and this interaction is potentially very prevalent in the marine ecosys-
tem (Amin et al., 2015).

Yet there are pertinent questions related to mechanism of such up-
take. Most are based on the signal generation and recognition, transport
and uptake processes. Some studies suggest that ‘quorum sensing’ plays
a major part in these interactions, as in the case of the Roseobacter
(Teplitski and Rajamani, 2011). It is also important to understand if
algal genomic inflexibility to survive under certain conditions results
in metabolic complementation and cooperative biosynthesis (Hom
et al., 2015). Therefore, whether this chemical exchange and communi-
cation eventually leads to genome sharing via horizontal gene transfer is
another element to this complex interaction. Most complex questions
related to uptake, communication and overall mechanism in a diversity
of algal–bacterial interaction are being addressed by single-cell



Fig. 4. An illustration of components of algal–bacterial association in aquatic ecosystem and some proven mechanisms. All the mechanisms of exchange have been described in the text.
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genomics and other omics approaches and this seems to be the way
forward (Cooper and Smith, 2015; Thompson et al., 2012).

3.3.1. Omics approach to illuminate interactions
The omics approach to study microbial ecology has transformed our

understanding of microbial communities and their environment
(Jansson et al., 2012). Although community metagemomics and
metatranscriptomics studies were performed in complex microbial
communities predominated by algae and bacteria (Moran et al., 2013;
Tringe et al., 2005), specific studies on microbiome of algal phycosphere
in natural systems and artificial systems like photobioreactors
using high-throughput sequencing were only recently constituted
(Krohn-Molt et al., 2013; Ramanan et al., 2015). Recent study demon-
strated power of using multi-omics data to illuminate the interaction
and mechanism thereof in natural assemblages (Amin et al., 2015).
Another study showed that the major phylotypes of bacteria from
green algae isolated fromdifferent habitats are similar, using 454 pyrose-
quencing (Ramanan et al., 2015). The functional domain of the phylo-
types also point to their similarity with PGPB. Unsurprisingly, the study
also revealed that basic techniques like Denaturing Gradient Gel Electro-
phoresis (DGGE) show limited diversity whereas the same samples
would have much higher diversity in reality. Several recent studies on
the natural assemblages in aquatic ecosystems using next generation se-
quencing (NGS) technologies have shown unbiased results, as NGS elim-
inates cloning biases. Moreover, NGS would not only help in sequencing
environmental DNA but also RNA as proved by studies on gene expres-
sion in oceans (Nowrousian, 2010). The depth and coverage of sequenc-
ing platforms could also help in using several genes for elucidating
bacterial diversity as the widely used rRNA gene is known to be highly
conserved. Besides, studies on specific bacterial community which are
lesser-known or in other words not dominant in the association could
be sequenced. A review on the role of omics in algal–bacterial interac-
tions suggests the use of combination of methods including traditional
approaches such as microbial and biochemical analyses in addition to
metabolomics, metagenomics and transcriptomics. The review argues
that a metabolomic analyses would be used to decipher range of
compounds exchanged between the partners while metagenomic and
transcriptomic approaches would corroborate the existing evidences
with insights on cluster interactions, genomic machinery and regulatory
pattern (Cooper and Smith, 2015). Taken together, the omics approach
and NGS platforms would help answer some basic questions on
algal–bacterial association. As microbiome is being explored as opera-
tional concept, such analyses using advanced tools inherited from highly
studied communities like gut microbiota are being performed. And this
knowledge would further unravel algae and dependent microbial
communities, their active drivers, functionalities and implications, and
the resulting applications.

4. Emerging applications

4.1. Environmental mitigation

4.1.1. Nutrient removal and wastewater treatment
Algaedepend onnitrogen andphosphorus from the environment for

growth as they are non-diazotrophic. Macronutrient (N, P, S and
C) deprivation of algae for prolonged periods results in severe stress
leading to stagnation and eventually death (Ramanan et al., 2013;
Schmollinger et al., 2014). On the other hand, nutrient richwastewaters
when discharged in natural surface waters might result in blooms of
toxic algae and cyanobacteria (Srivastava et al., 2014). Heterotrophic
bacteria require carbon and other nutrients for growth and are widely
used for the treatment ofwastewater. Naturally, algal–bacterial systems
have been extensively used in the treatment of nutrient rich wastewa-
ters since 1950s. One of the earliest descriptions of algal–bacterial inter-
actions in wastewater treatment is presented by Oswald and Gotaas
(1957). Early photosynthesis based systems were neither aerated nor
mixed, therefore, the treatment efficiency achieved with these systems
are a fraction of what could be achieved with ponds or systems
developed later (Benemann et al., 1977; Hoffmann, 1998). As early as
1955, it was proposed that in oxidation ponds, algal–bacterial symbiosis
results in sewage treatment with exchange of O2 and CO2, and NH4

+

ions. Thus it was proved technically that most nutrient rich, low
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oxygen-demand environments shall be conducive to both algal and
bacterial growth (Oswald and Gotaas, 1957). However, this conjunction
between algae and bacteria holds enormous environmental potential
even today (Kim et al., 2014b).

The advent of high rate algal ponds (HRAP) not only increased the
efficiency of the process, but also enhanced the possibility for sewage
treatment and biofuel production, with reliable yield (Craggs et al.,
2011; Kang et al., 2014; Kim et al., 2014b; Park et al., 2011, 2013).
Moreover, it was demonstrated that a desired consortium of algae and
bacteria could bemaintained in lower scaleswith better process optimi-
zation, monitoring and recycling part of the biomass (Cho et al., 2015a;
Park et al., 2013). Our studies have also proved that bacteria help in the
flocculation of algae and would be effective for better harvesting of the
algal–bacterial biomass, reducing the costs (Kim et al., 2014b; Lee et al.,
2013). Apart from nutrients removed from the wastewater, several
toxic metal ions are removed by microalgal consumption, achieving
the polishing effects of tertiary treatment and leaving the effluent
ready to be discharged into surface waters, at optimum operation of
HRAP. Several agro-industrial wastewaters can be also treated with
such a system (Ferrero et al., 2012; Hernández et al., 2013). van der
Ha et al. (2012) demonstrated the use of synergism between methane
oxidizing bacteria andmicroalgae to effectively treat dissolvedmethane
in anaerobically treated wastewaters, which otherwise escape into the
atmosphere in other aeration based processes. Considering the efficien-
cy of the treatment, relatively minuscule use of energy, and production
of biomasswhich could be valourized, algal–bacterial sewage treatment
process could be a major alternative technology to aeration based tech-
nologies like activated sludge treatment (AST) (Kim et al., 2014b). The
amount of energy consumed primarily inASTprocess dependentwaste-
water treatment plants in Korea alone is ~1000 GWh (Ministry of
Environment, 2011). A conservative estimate shows that energy savings
of 100 folds could be achieved, if the facilities switch to algal–bacterial
process (Kang et al., 2014; Kim et al., 2014b). In addition, costs reduc-
tion from decreased usage of chemicals for nutrient removal is possible.
However, this potential estimate from these studies needs to be consol-
idated with life cycle and related economic analyses.

Attached growth systems for sewage andwastewater treatment also
depend on the formation of algal–bacterial biofilms. Such technologies
are getting widely popular because of the ease of cultivation with
relatively lesser self-shading compared to suspended systems, and
primarily ease of harvest (Christenson and Sims, 2011; Christenson
and Sims, 2012; Hoffmann, 1998; Lee et al., 2014b). The harvesting
process includes scrapping of the biomass from the attached systems
and drying is relatively easy with the use of solar energy (Lee et al.,
2014b). Hence, such systems have lesser capital costs, yet they have
not been considered for large scale applications so far. Other engineered
systems demonstrated so far include the algal turf scrubber (ATS), in
which pulsed wastewaters flow over sloping surfaces with attached,
naturally seededfilamentous algae. However, ATS is only recommended
as polishing systems for tertiary treatment and lower organic loading
rate wastewaters, but used at large scale of 40–80 million liters per
day (Adey et al., 2011). However, compared to suspended culture
systems, the biofilms in attached systems are complex, as systematic
studies on the fundamental processes are less elucidated, and studies
on the role of algal–bacterial interactions in such engineered biofilm
systems treating wastewater are sparse (Kesaano and Sims, 2014).

4.1.2. Bioremediation
Many studies have dealt with algae–bacteria consortium for

metal bioremediation (Boivin et al., 2007) and degradation of organ-
ic pollutants (Tang et al., 2010). The effective use of algal–bacterial
interactions in degradation of organophosphate insecticides such
as monocrotophos, quinalphos and methyl parathion was also dem-
onstrated (Subashchandrabose et al., 2011). Besides, degradation of
many other toxic pesticides including DDT, atrazine, α-endosulfan
was reported (Subashchandrabose et al., 2013). Several studies
have shown the involvement of bacteria/cyanobacteria and algae in
the treatment of organic pollutants including black oil, acetonitrile,
phenol, naphthalene, benzopyrene, dibenzofuran, azo compounds,
among others (Mahdavi et al., 2015; Muñoz and Guieysse, 2006;
Subashchandrabose et al., 2013). Recent study demonstrated the
role of algal–bacterial interactions in the degradation of thiocyanate
wastewater, which provides the glimpse of use of this interaction for
degradation of toxic substrates (Ryu et al., 2015).

Algae also require several metals for normal growth and metabo-
lism, albeit in small quantities and hence are consideredmicronutrients.
Algae when deprived of these metals, exhibit systematic, specific stress
responses, which are well documented (Glaesener et al., 2013; Kropat
et al., 2015; Malasarn et al., 2013). On the other hand, higher levels of
metal could lead to toxicity in algae, hence algal–bacterial community
mutualistically detoxify and assimilate metals frommetal rich environ-
ments. The process of accumulation of heavy metals would be through
various means including physical adsorption, covalent bonding, ion ex-
change and chemisorption, surface precipitation, redox reactions or
crystallization on the cell surface. Moreover, on a lesser scale, metals
are quenched by active uptake into the cell interior for metabolism or
as a defensive tool to avoid poisoning. Microalgal growth results in the
release of metal chelators and increase in pH often also precipitates
heavy metals which are taken-up by the associated bacteria. Few excel-
lent reviews on detailed analysis of bioremediation of hazardous pollut-
ants and heavy metals by algal–bacterial consortium are available
(Muñoz and Guieysse, 2006; Subashchandrabose et al., 2013).

4.1.3. Bloom control
One of the first research studies on bacterial control of natural algal

blooms was again on Roseobacter lineage prevalent in algal blooms
dominated by E. huxleyi and dinoflagellates (González et al., 2000).
But from the context of application, it is important to seek solutions
for harmful algal blooms (HAB) particularly in fresh waters of human
use. For detailed understanding of HAB control by bacteria in marine
environment, readers are referred to other studies (Bai et al., 2011;
Buchan et al., 2014;Wagner-Döbler and Biebl, 2006). In freshwater eco-
systems, several isolated studies have established the use of bacteria for
HAB control. An early study on Rhodococcus, a Gram-positive bacterium
prevalent in a eutropic lake, shows the cyanobactericidal activity of the
bacterial filtrate (Lee et al., 2010). Studies on bothmarine and freshwa-
ter HAB revealed the resurgence of bacterial population corresponding
to late or post bloom period, indicating that mechanism of action is in-
different. Hence, monitoring of both algal and bacterial populations
over time would not only help in understanding the dynamics in fresh-
water systems but also help in control of the blooms (Srivastava et al.,
2014; Srivastava et al., 2013). On the other hand, bacterial growth
after the algal bloom could cause grave damage, depriving oxygen lead-
ing to fish kills, symbolizing the overall collapse of the ecosystem.
Therefore, bacterial role should be thoroughly studied to employ them
at the right time and in the right environment. Moreover, the algal
bloom is controlled by various positive and negative effectors, which in-
teract in cohesion (Paerl and Otten, 2013). And finally, any treatment of
algal or cyanobacterial blooms by heterotrophic, predatory bacteria
should be preceded by or in combination with excess nutrient cutoff
from the freshwater system.

4.2. Biotechnological potential

4.2.1. Biorefineries — cultivation systems
As discussed in earlier sections, bacteria play a key role in providing

phytohormones or macro- and micronutrients to algae which result in
various physiological changes within algae most notably enhanced
growth rate of algae. However, the role of bacteria in microalgal growth
enhancement is often ignored. When the phycosphere bacterial
communities, especially PGPB were eliminated, the algal growth rate
under phototrophic condition was found to be very slow (Cho et al.,
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2015b;Watanabe et al., 2005). Recent studies on co-cultivation of algae
with growth enhancing bacteria revealed that bacteria enhance algal
growth rate by at least 10% and in specific cases by about 70%. Hence,
in mass cultivation of algal cultures, PGPB would be highly useful to en-
hance growth rates which would result in better productivity. Subse-
quently, regular monitoring of both algae and bacterial community
would be required as it is imperative to havedesirable bacterial commu-
nity associated with microalgae in mass cultivation to achieve higher
growth rates (Cho et al., 2015a). Or as mentioned earlier, simple tech-
niques such as recycling of the harvested algal–bacterial community
into HRAPmight also help ensure the stability of the community. How-
ever, it is also held that in algal systems using wastewater as nutrient
the influentmicrobial diversity should also bemonitored and controlled
to sustain desirable algal–bacterial community (Cho et al., 2015a; Park
et al., 2013).

4.2.2. Biorefineries — microalgal harvesting
Another well-known application of algal–bacterial interactions is

the role of bacteria in microalgal harvesting (Gardes et al., 2011 and
Grossart et al., 2006). Until recently the role of bacteria in microalgal
flocculation was speculative, unlike in yeasts (Bester et al., 2012). It is
now established that bacteria increase the floc-size of algae thereby en-
abling settlement, even in lesser flocculation conducive condition. Even
though axenic microalgal culture responds to flocculants, without bac-
teria surrounding its phycosphere, algae cannot form settleable flocs,
resulting in non-settleable flocs, which are still in suspension (Lee
et al., 2013; Powell and Hill, 2013, 2014). It is also thought that aggrega-
tion ismade possible in part through charge neutralization by positively
charged calcium ions binding to negatively charged teichoic acid resi-
dues, especially for Gram-positive bacteria (Powell and Hill, 2014).

Although the role of bacteria is established, the complete mechanism
is still not clear; especially the role played by Extracellular Polysaccharide
Substances (EPS), and the cell wall and secretory proteins of algae.
Bioflocculation was demonstrated more than a decade ago using EPS
from Paenibacillus sp., yet the compounds or the class of compounds
which induce such flocculation and their properties remain elusive (Oh
et al., 2001a). Amechanism similar to yeast self-flocculation is also a pos-
sibility (Bester et al., 2012). There is also a possibility for a completely re-
verse mechanism given algal tendencies to shelter itself along the water
column depending upon the intensity of light (Neale, 1987). Further re-
search needs to be done to ascertain the function of EPS as bioflocculants,
its composition and its interaction with algae. There are also questions
over the role of genetic apparatus and quorum sensing inmicroalgal floc-
culation. This is important as microalgal harvesting is one of the major
biomass production costs (20–30%) in biorefineries (Uduman et al.,
2010). In a related development in the algal bioenergy research, algicidal
bacteria have been shown to help in the lipid extraction process from
microalgae, because of their role in algal cell lysis. This process could be
used along with the bio-flocculation technique to enhance lipid produc-
tivity (Lenneman et al., 2014).

4.2.3. Advanced biorefineries
Algae are known to produce a variety of compounds, from fuels to

cosmetics. The future biorefineries would not only look to capitalize
on this enormous potential but also augment this approach to produce
more compounds and enhance their respective amounts by using an
ecological engineering approach (Cho et al., 2015b). Ecological engi-
neering or synthetic ecology is a broad term used for artificial biomi-
metic systems which use multi-organism approach for present-day
solutions (Cho et al., 2015b; Kazamia et al., 2012a). Any biorefinery sys-
temwould benefit from the beneficial effects of bacteria for algal growth
promotion and harvesting as discussed above. Yet, such interactions
have potential to offer beyond what has been demonstrated so far. For
instance, in the bioenergy sector, algae–bacteria interactions could be
used to good effect, for biodiesel production, electricity generation, bio-
gas, bioethanol and biohydrogen production. Several studies have
demonstrated that electricity producing bacteria, such as Geobacter, can
coexist with algae to synergistically produce electricity using light micro-
bial solar/fuel cells (He et al., 2009; Nishio et al., 2013; Rosenbaum et al.,
2005). Similarly, algal–bacterial wastewater treatment followed by the
production of biogas fromwet algal–bacterial biomass is also extensively
documented (Prajapati et al., 2013). The role of algae and photosynthetic
bacteria for biohydrogen production is being studied, but large-scale ap-
plication has severe limitations (Das and Veziroǧlu, 2001; Miura et al.,
1992). A study demonstrated the use of symbiotic bacteria to enhance
photo-fermentative hydrogen evolution of Chlamydomonas, by oxygen
elimination and efficient bacterial respiration resulting in activation of
algal Fe-hydrogenase (Lakatos et al., 2014). Similarly, two-stage process
of coupled biohydrogen and biogas production was demonstrated using
a natural mixed population of Chlamydomonas sp., Scenedesmus sp., and
Rhizobium sp. Besides, hydrogen production was achieved without
resorting to a sulfur-deprivation process and bymere elimination of oxy-
gen by the symbionts, and the resulting biomasswas used for the produc-
tion of biogas (Wirth et al., 2015). Another two-stage production of
value added chemicals from biogas was proved to be possible by
using microalgae and methane-oxidizing bacteria. In the first stage,
CO2 in the biogas was fixed by Scenedesmus sp., producing oxygen,
and lipids were produced by the N-depleted culture. In the second
stage, the artificial resulting gas mixture of 60%methane and 40% ox-
ygen was treated by a methane oxidizing bacterium to produce in-
tracellular polyhydroxybutyrate (PHB) after repeated nitrogen
limitation (van der Ha et al., 2012). This approach was also demon-
strated in a single stage by co-cultivation. Such algal–bacterial PHB
production process is also studied in laboratory photobioreactors using
inoculum from natural environments (Fradinho et al., 2013).

Bio-ethanol production from algal–bacterial co-culture is an
enriching advance, which is yet to be fully explored. Some algae can
produce up to 38% of starch granules (dry cell weight basis), and various
marine bacteria can utilize this starch to produce ethanol, which can be
performed as a two-step or one-step process, based on the harmony be-
tween the species used (Matsumoto et al., 2003). Another promising
approach which unites ecological and genetic engineering approach, is
the use of photosynthetically fixed carbon from algae to produce a de-
sired product, such as, succinate by a genetically engineered bacteria,
such as Corynebacterium glutamicum (Lee et al., 2014a). This approach
promises unlimited possibilities for the production of high-value com-
pounds from light energy. In summary, theuse of ecological engineering
approaches opens a new era for exciting possibilities for algae-based
biorefineries for sustainable production of fuels and chemicals (Smith
et al., 2010). Finally, such multi-species approach would circumvent
the restrictions imposed on using genetically engineered systems on a
large scale (Ortiz-Marquez et al., 2013).

4.2.4. Sustainable aquaculture system
Until lately, algaewere the only focus of aquaculture feed with scant

attention to bacteria. Even within the aquaculture system, control of
bacterial diseases was the only rationale, while the role that could be
potentially played by beneficial bacteria was largely ignored. A healthy
feed would comprise grazers, algae and their associated beneficial bac-
teria, and it has been used industrially for decades (Spolaore et al.,
2006). Several algal species were also used for controlling pathogenic
bacteria in aquaculture systems, like Vibrio harveyi, by disrupting the
quorum sensing communication between the pathogenic bacteria
(Natrah et al., 2013). It was also proved that co-ingestion of algae and
bacteria results in healthier Artemia culture through better nitrogen
assimilation (Toi et al., 2014). Many studies have dealt with algal–
bacterial treatment of aquaculture wastewater, but the resounding
demonstration that these flocs harvested after wastewater treatment
would be used as feed again for Pacific white shrimps, Litopenaeus
vannamei, throws light on the utility of such an integrated, sustainable
and recyclable aquaculture system (Natrah et al., 2013; Van Den
Hende et al., 2014).



Table 1
A summary of current understanding of evolutionary and ecological roles to harness biotechnological potential of algal–bacterial interactions.

S.
no.

Processes in algal
biotechnology

Ecological/evolutionary role Biotechnological applications References

1. Strain selection Algae harboring PGPB are known to evade
pathogens like harmful bacteria and fungi.

Help maintain desirable microbial community
and avoid frequent cultivation crashes.

Cho et al. (2015a), Egan et al.
(2000) and Wiese et al. (2009)

2. Cultivation Bacteria aid algal growth by supplementing various
major and minor nutrients in oligotrophic
environments. See Fig. 4 for details.

Enhanced growth rate and algal productivity.
Reduced dependence on supplied nutrients.

Cho et al. (2015b), Gonzalez and
Bashan (2000) and Kouzuma and
Watanabe (2015)

3. Harvesting Bacteria initiate algal flocculation possibly for two
reasons. Firstly, large algal–bacterial flocs help
algae evade predators like zooplankton as large
flocs are difficult to consume. Secondly, bacteria
willingly settle algae resulting in algal death and
subsequent bacterial degradation.

Harvesting accounts for 30% of overall costs in
algal bio-product industry. Large algal–bacterial
flocs settle readily, resulting in reduced use of
flocculants and costs, and better yield.

Lee et al. (2013), Montemezzani et al.
(2015), Powell and Hill (2013)
and Wang et al. (2015)

4. Extraction Pathogenic bacteria weaken algal cell wall resulting
in disruption and cell death, playing a leading
role in decomposition.

A study showed enhanced lipid recovery from
bacteria infested algae thereby reducing the
cost of organic solvent extraction.

Bai et al. (2011), Halim et al. (2012)
and Lenneman et al. (2014)
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5. Present & future prospects

As previously mentioned, there are more questions than answers in
algal–bacterial interactions from its evolution to applications. The
present day understanding of ecology and evolution of algal–bacterial in-
teractions has not been exploited in algae based technologies (Shurin
et al., 2013). Table 1 summarizes the need for such understanding and
Fig. 5. Various applications of algal–bacterial interactio
integration in algal biotechnology.Moreover, further studies in ecological
engineering would help in the use of algae and bacteria as a production
platform for host of industrially important chemicals and fuels in future
biorefineries (Brenner et al., 2008; Cho et al., 2015b; Lee et al., 2014a).
As prices of traditionally cultivated food products rise with burgeoning
population and reduced land area, alternative food products such as
algae based diet could gain prominence (Abreu et al., 2014; Tabarsa
ns for biotechnology and environmental sectors.
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et al., 2012; Wijesekara and Kim, 2015). Thus, there is a need to look at
algal–bacterial interactions for both high-value products such as
nutraceuticals & cosmetics, low value food products for aquaculture and
animal feed as well as medium to high value chemicals such as fuels
and PHBs. Secondly, algal–bacterial interactions are of potential use in
environmental technologies. Algae offer photosynthetically produced ox-
ygenwhich couldbeused for algae–bacteria basedwastewater treatment
(Praveen and Loh, 2015). It has been demonstrated adequately that algae
and bacteria combine to remediate toxic chemicals and metals
(Subashchandrabose et al., 2011). On the contrary, parasitic bacteria are
known to help in the revival of HAB infested freshwater and marine en-
vironments (Fig. 5). Therefore, further studies on these interactions
would not only help the commercialization stakeholders but also help
in understanding some of basic but pertinent questions like involvement
in — biogeochemical cycling, endosymbiosis, multicellularity and vital
habitats. This makes for an exciting new era with a paradigm shift from
single species based approach to community based integration. And
this integration closely mimics the natural ecosystem, therefore driving
us towards sustainable production and development.
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