24 research outputs found
Roles of metal ions in the selective inhibition of oncogenic variants of isocitrate dehydrogenase 1
Cancer linked isocitrate dehydrogenase (IDH) 1 variants, notably R132H IDH1, manifest a ‘gain-of-function’ to reduce 2-oxoglutarate to 2-hydroxyglutarate. High-throughput screens have enabled clinically useful R132H IDH1 inhibitors, mostly allosteric binders at the dimer interface. We report investigations on roles of divalent metal ions in IDH substrate and inhibitor binding that rationalise this observation. Mg2+/Mn2+ ions enhance substrate binding to wt IDH1 and R132H IDH1, but with the former manifesting lower Mg2+/Mn2+ KMs. The isocitrate-Mg2+ complex is the preferred wt IDH1 substrate; with R132H IDH1, separate and weaker binding of 2-oxoglutarate and Mg2+ is preferred. Binding of R132H IDH1 inhibitors at the dimer interface weakens binding of active site Mg2+ complexes; their potency is affected by the Mg2+ concentration. Inhibitor selectivity for R132H IDH1 over wt IDH1 substantially arises from different stabilities of wt and R132H IDH1 substrate-Mg2+ complexes. The results reveal the importance of substrate-metal ion complexes in wt and R132H IDH1 catalysis and the basis for selective R132H IDH1 inhibition. Further studies on roles of metal ion complexes in TCA cycle and related metabolism, including from an evolutionary perspective, are of interest
Anion-exchange chromatography mass spectrometry provides extensive coverage of primary metabolic pathways revealing altered metabolism in IDH1 mutant cells
Altered central carbon metabolism is a hallmark of many diseases including diabetes, obesity, heart disease and cancer. Identifying metabolic changes will open opportunities for better understanding aetiological processes and identifying new diagnostic, prognostic, and therapeutic targets. Comprehensive and robust analysis of primary metabolic pathways in cells, tissues and bio-fluids, remains technically challenging. We report on the development and validation of a highly reproducible and robust untargeted method using anion-exchange tandem mass spectrometry (IC-MS) that enables analysis of 431 metabolites, providing detailed coverage of central carbon metabolism. We apply the method in an untargeted, discovery-driven workflow to investigate the metabolic effects of isocitrate dehydrogenase 1 (IDH1) mutations in glioblastoma cells. IC-MS provides comprehensive coverage of central metabolic pathways revealing significant elevation of 2-hydroxyglutarate and depletion of 2-oxoglutarate. Further analysis of the data reveals depletion in additional metabolites including previously unrecognised changes in lysine and tryptophan metabolism
Roles of metal ions in the selective inhibition of oncogenic variants of isocitrate dehydrogenase 1
Cancer linked isocitrate dehydrogenase (IDH) 1 variants, notably R132H IDH1, manifest a ‘gain-of-function’ to reduce 2-oxoglutarate to 2-hydroxyglutarate. High-throughput screens have enabled clinically useful R132H IDH1 inhibitors, mostly allosteric binders at the dimer interface. We report investigations on roles of divalent metal ions in IDH substrate and inhibitor binding that rationalise this observation. Mg2+/Mn2+ ions enhance substrate binding to wt IDH1 and R132H IDH1, but with the former manifesting lower Mg2+/Mn2+ KMs. The isocitrate-Mg2+ complex is the preferred wt IDH1 substrate; with R132H IDH1, separate and weaker binding of 2-oxoglutarate and Mg2+ is preferred. Binding of R132H IDH1 inhibitors at the dimer interface weakens binding of active site Mg2+ complexes; their potency is affected by the Mg2+ concentration. Inhibitor selectivity for R132H IDH1 over wt IDH1 substantially arises from different stabilities of wt and R132H IDH1 substrate-Mg2+ complexes. The results reveal the importance of substrate-metal ion complexes in wt and R132H IDH1 catalysis and the basis for selective R132H IDH1 inhibition. Further studies on roles of metal ion complexes in TCA cycle and related metabolism, including from an evolutionary perspective, are of interest
Resistance to the isocitrate dehydrogenase 1 mutant inhibitor ivosidenib can be overcome by alternative dimer-interface binding inhibitors
Ivosidenib, an inhibitor of isocitrate dehydrogenase 1 (IDH1) R132C and R132H variants, is approved for the treatment of acute myeloid leukaemia (AML). Resistance to ivosidenib due to a second site mutation of IDH1 R132C, leading to IDH1 R132C/S280F, has emerged. We describe biochemical, crystallographic, and cellular studies on the IDH1 R132C/S280F and R132H/S280F variants that inform on the mechanism of second-site resistance, which involves both modulation of inhibitor binding at the IDH1 dimer-interface and alteration of kinetic properties, which enable more efficient 2-HG production relative to IDH1 R132C and IDH1 R132H. Importantly, the biochemical and cellular results demonstrate that it should be possible to overcome S280F mediated resistance in AML patients by using alternative inhibitors, including some presently in phase 2 clinical trials