331 research outputs found

    Developing Plasmodium falciparum malaria vaccines for populations living in areas with stable parasite transmission

    Get PDF
    Individuals living in areas with stable transmission of Plasmodium falciparum parasites develop substantial protective immunity to the disease during childhood. Because of naturally acquired immunity, which appears mainly to target parasite-encoded Variable Surface Antigens (VSA) on the Infected Erythrocytes (IE), severe and life-threatening disease among adults in such areas is rare. However, low-grade asymptomatic parasitaemia continues to be present in a large proportion of people. So far, experimental P. falciparum malaria vaccination employing non-VSA antigens have resulted in variable degrees of protection, including sterile protection, but the duration of the protection afforded is short-lived, probably due to insufficient boosting. Based on these findings, our approach to vaccine development is to accelerate naturally acquired VSA-specific immunity. The ambition is to develop vaccines that will protect against mortality and severe morbidity, but which allow persistence of low-grade, asymptomatic infection. Hopefully, this approach will ensure regular boosting of immunity that appears necessary for the long-lasting protection required of vaccines to be deployed in malaria-endemic areas

    Human Vδ1+ T Cells in the Immune Response to Plasmodium falciparum Infection

    Get PDF
    Naturally acquired protective immunity to Plasmodium falciparum malaria is mainly antibody-mediated. However, other cells of the innate and adaptive immune system also play important roles. These include so-called unconventional T cells, which express a γδ T-cell receptor (TCR) rather than the αβ TCR expressed by the majority of T cells—the conventional T cells. The γδ T-cell compartment can be divided into distinct subsets. One expresses a TCR involving Vγ9 and Vδ2, while another major subset uses instead a TCR composed of Vδ1 paired with one of several types of γ chains. The former of these subsets uses a largely semi-invariant TCR repertoire and responds in an innate-like fashion to pyrophosphate antigens generated by various stressed host cells and infectious pathogens, including P. falciparum. In this short review, we focus instead on the Vδ1 subset, which appears to have a more adaptive immunobiology, but which has been much less studied in general and in malaria in particular. We discuss the evidence that Vδ1+ cells do indeed play a role in malaria and speculate on the function and specificity of this cell type, which is increasingly attracting the attention of immunologists

    Kinetics of B Cell responses to <i>Plasmodium falciparum </i>erythrocyte membrane protein 1 in Ghanaian women naturally exposed to malaria parasites

    Get PDF
    Naturally acquired protective immunity to Plasmodium falciparum malaria takes years to develop. It relies mainly on Abs, particularly IgG specific for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) proteins on the infected erythrocyte surface. It is only partially understood why acquisition of clinical protection takes years to develop, but it probably involves a range of immune-evasive parasite features, not least of which are PfEMP1 polymorphism and clonal variation. Parasite-induced subversion of immunological memory and expansion of “atypical” memory B cells may also contribute. In this first, to our knowledge, longitudinal study of its kind, we measured B cell subset composition, as well as PfEMP1-specific Ab levels and memory B cell frequencies, in Ghanaian women followed from early pregnancy up to 1 y after delivery. Cell phenotypes and Ag-specific B cell function were assessed three times during and after pregnancy. Levels of IgG specific for pregnancy-restricted, VAR2CSA-type PfEMP1 increased markedly during pregnancy and declined after delivery, whereas IgG levels specific for two PfEMP1 proteins not restricted to pregnancy did not. Changes in VAR2CSA-specific memory B cell frequencies showed typical primary memory induction among primigravidae and recall expansion among multigravidae, followed by contraction postpartum in all. No systematic changes in the frequencies of memory B cells specific for the two other PfEMP1 proteins were identified. The B cell subset analysis confirmed earlier reports of high atypical memory B cell frequencies among residents of P. falciparum–endemic areas, and indicated an additional effect of pregnancy. Our study provides new knowledge regarding immunity to P. falciparum malaria and underpins efforts to develop PfEMP1-based vaccines against this disease

    B-cell responses to pregnancy-restricted and -unrestricted Plasmodium falciparum erythrocyte membrane protein 1 antigens in Ghanaian women naturally exposed to malaria parasites

    Get PDF
    Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods (pregnancy) to responses specific for comparable antigens expressed independent of pregnancy. Our data indicate that PfEMP1-specific B-cell memory is adequately acquired even when antigen exposure is infrequent (e.g., VAR2CSA-type PfEMP1). Furthermore, immunological memory specific for VAR2CSA-type PfEMP1 can be maintained for many years without antigen reexposure and after circulating antigen-specific IgG has disappeared. The study provides evidence that natural exposure to P. falciparum leads to formation of durable B-cell immunity to clinically important PfEMP1 antigens. This has encouraging implications for current efforts to develop PfEMP1-based vaccines

    Unraveling the Impact of Malaria Exposure Before Birth

    Get PDF
    Lars Hviid discusses a research article in PLoS Medicine that explores whether prenatal exposure to malaria is associated with increased susceptibility to malarial infection and anemia in infancy

    Proton Pump Activity of Mitochondria-rich Cells : The Interpretation of External Proton-concentration Gradients

    Get PDF
    We have hypothesized that a major role of the apical H+-pump in mitochondria-rich (MR) cells of amphibian skin is to energize active uptake of Cl− via an apical Cl−/HCO3−-exchanger. The activity of the H+ pump was studied by monitoring mucosal [H+]-profiles with a pH-sensitive microelectrode. With gluconate as mucosal anion, pH adjacent to the cornified cell layer was 0.98 ± 0.07 (mean ± SEM) pH-units below that of the lightly buffered bulk solution (pH = 7.40). The average distance at which the pH-gradient is dissipated was 382 ± 18 μm, corresponding to an estimated “unstirred layer” thickness of 329 ± 29 μm. Mucosal acidification was dependent on serosal pCO2, and abolished after depression of cellular energy metabolism, confirming that mucosal acidification results from active transport of H+. The [H+] was practically similar adjacent to all cells and independent of whether the microelectrode tip was positioned near an MR-cell or a principal cell. To evaluate [H+]-profiles created by a multitude of MR-cells, a mathematical model is proposed which assumes that the H+ distribution is governed by steady diffusion from a number of point sources defining a set of particular solutions to Laplace's equation. Model calculations predicted that with a physiological density of MR cells, the [H+] profile would be governed by so many sources that their individual contributions could not be experimentally resolved. The flux equation was integrated to provide a general mathematical expression for an external standing [H+]–gradient in the unstirred layer. This case was treated as free diffusion of protons and proton-loaded buffer molecules carrying away the protons extruded by the pump into the unstirred layer; the expression derived was used for estimating stationary proton-fluxes. The external [H+]-gradient depended on the mucosal anion such as to indicate that base (HCO3−) is excreted in exchange not only for Cl −, but also for Br− and I−, indicating that the active fluxes of these anions can be attributed to mitochondria-rich cells

    Computer work and self-reported variables on anthropometrics, computer usage, work ability, productivity, pain, and physical activity

    Get PDF
    BACKGROUND: Computer users often report musculoskeletal complaints and pain in the upper extremities and the neck-shoulder region. However, recent epidemiological studies do not report a relationship between the extent of computer use and work-related musculoskeletal disorders (WMSD). The aim of this study was to conduct an explorative analysis on short and long-term pain complaints and work-related variables in a cohort of Danish computer users. METHODS: A structured web-based questionnaire including questions related to musculoskeletal pain, anthropometrics, work-related variables, work ability, productivity, health-related parameters, lifestyle variables as well as physical activity during leisure time was designed. Six hundred and ninety office workers completed the questionnaire responding to an announcement posted in a union magazine. The questionnaire outcomes, i.e., pain intensity, duration and locations as well as anthropometrics, work-related variables, work ability, productivity, and level of physical activity, were stratified by gender and correlations were obtained. RESULTS: Women reported higher pain intensity, longer pain duration as well as more locations with pain than men (P < 0.05). In parallel, women scored poorer work ability and ability to fulfil the requirements on productivity than men (P < 0.05). Strong positive correlations were found between pain intensity and pain duration for the forearm, elbow, neck and shoulder (P < 0.001). Moderate negative correlations were seen between pain intensity and work ability/productivity (P < 0.001). CONCLUSIONS: The present results provide new key information on pain characteristics in office workers. The differences in pain characteristics, i.e., higher intensity, longer duration and more pain locations as well as poorer work ability reported by women workers relate to their higher risk of contracting WMSD. Overall, this investigation confirmed the complex interplay between anthropometrics, work ability, productivity, and pain perception among computer users

    Selective activation of TCR-γδ+ cells in endemic Burkitt's lymphoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The overlap in geographical distribution of <it>Plasmodium falciparum </it>malaria and endemic Burkitt's lymphoma (eBL) – an aggressive Epstein-Barr virus (EBV)-associated B-cell tumour occurring almost exclusively in the tropics – strongly suggests a link between the two diseases. It is suspected that the polyclonal B-cell activation in <it>P. falciparum </it>malaria may precipitate a breakdown in homeostatic T-cell control of EBV-immortalized B-cell proliferation. Previous studies have suggested that a particular T-cell subset, characterized by expression of V<it>δ</it>1<sup>+ </sup><it>γδ </it>T-cell receptors, is important for maintaining B-cell homeostasis, both in <it>P. falciparum</it>- exposed populations and in individuals subject to polyclonal B-cell activation of other aetiology. The objective of the present study was, therefore, to characterize lymphocyte phenotypes and to investigate possible differences in T-cell subset composition and activation status in <it>P. falciparum</it>-exposed Ghanaian children with and without eBL.</p> <p>Methods</p> <p>Venous blood samples in heparin from 21 eBL patients (mean age: 7.0 years; range: 3–11 years), referred to the Burkitt's Tumour Centre at Korle-Bu Teaching Hospital, Accra and 15 healthy, age and sex matched children, were stained with fluorescein isothiocyanate (FITC)-, phycoerythrin (PE)-, R-phycoerythrin (RPE)- and RPE-Cy5-conjugated antibodies (CD3, CD4, CD8, CD25, CD69, CD95, HLA-DR, TCR-<it>γδ</it>, V<it>δ</it>1, V<it>δ</it>3, V<it>γ</it>9 and B-cells) and acquired on a flow cytometer.</p> <p>Results</p> <p>A reduction in the proportion of CD3<sup>+ </sup>cells in eBL patients, due mainly to perturbations among TCR-<it>γδ</it><sup>+ </sup>cells was observed. In contrast, the proportions of CD4<sup>+ </sup>or CD8<sup>+ </sup>cells were relatively unaffected, as were the mean numbers of peripheral blood mononuclear cells.</p> <p>Conclusion</p> <p>Selective changes in numbers and activation status of TCR-<it>γδ</it><sup>+ </sup>cells occurs in Ghanaian children with eBL, a pattern which is similar to <it>P. falciparum</it>-induced changes. The data supports the hypothesis of a regulatory role for V<it>δ</it>1<sup>+ </sup>TcR-<it>γδ </it>T-cells in maintaining B-cell homeostasis and provides insights into the pathogenesis of eBL.</p

    Multiple <i>Plasmodium falciparum</i> erythrocyte membrane protein 1 variants per genome can bind IgM via its Fc fragment Fcμ

    Get PDF
    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) adhesive proteins expressed on the surfaces of infected erythrocytes (IEs) are of key importance in the pathogenesis of P. falciparum malaria. Several structurally and functionally defined PfEMP1 types have been associated with severe clinical manifestations, such as cerebral malaria in children and placental malaria in pregnant women. PfEMP1 that can bind the Fc part of IgM (Fcμ) characterizes one such type, although the functional significance of this IgM binding to PfEMP1 remains unclear. In this study, we report the identification and functional analysis of five IgM-binding PfEMP1 proteins encoded by P. falciparum NF54. In addition to the VAR2CSA-type PFL0030c protein, already known to bind Fcμ and to mediate chondroitin sulfate A (CSA)-specific adhesion of IEs in the placenta, we found four PfEMP1 proteins not previously known to bind IgM this way. Although they all contained Duffy binding-like ε (DBLε) domains similar to those in VAR2CSA-type PfEMP1, they did not mediate IE adhesion to CSA, and IgM binding did not shield IEs from phagocytosis of IgG-opsonized IEs. In this way, these new IgM-binding PfEMP1 proteins resemble the rosette-mediating and IgM-binding PfEMP1 HB3VAR06, but none of them mediated formation of rosettes. We could map the capacity for Fc-specific IgM binding to DBLε domains near the C terminus for three of the four PfEMP1 proteins tested. Our study provides new evidence regarding Fc-dependent binding of IgM to PfEMP1, which appears to be a common and multifunctional phenotype
    corecore