7,502 research outputs found
Projected technological requirements for remote sensing of terrain variables
Contributions of remote sensing to hydrogeomorphology and terrain analysis are reviewed in order to identify characteristics that should receive support in system and sensor configuration planning. Fluvial morphological studies, peak discharge modeling, and hydrogeomorphic floodplain mapping using large scale (1:12,000) to small scale (1:750,000) orbital photography are discussed as well as quantitative assessment of terrain variables for specific applications
High-throughput in-situ characterization and modelling of precipitation kinetics in compositionally graded alloys
The development of new engineering alloy chemistries is a time consuming and
iterative process. A necessary step is characterization of the
nano/microstructure to provide a link between the processing and properties of
each alloy chemistry considered. One approach to accelerate the identification
of optimal chemistries is to use samples containing a gradient in composition,
ie. combinatorial samples, and to investigate many different chemistries at the
same time. However, for engineering alloys, the final properties depend not
only on chemistry but also on the path of microstructure development which
necessitates characterization of microstructure evolution for each chemistry.
In this contribution we demonstrate an approach that allows for the in-situ,
nanoscale characterization of the precipitate structures in alloys, as a
function of aging time, in combinatorial samples containing a composition
gradient. The approach uses small angle x-ray scattering (SAXS) at a
synchrotron beamline. The Cu-Co system is used for the proof-of-concept and the
combinatorial samples prepared contain a gradient in Co from 0% to 2%. These
samples are aged at temperatures between 450{\textdegree}C and
550{\textdegree}C and the precipitate structures (precipitate size, volume
fraction and number density) all along the composition gradient are
simultaneously monitored as a function of time. This large dataset is used to
test the applicability and robustness of a conventional class model for
precipitation that considers concurrent nucleation, growth and coarsening and
the ability of the model to describe such a large dataset.Comment: Published in Acta Materiali
The enviornmental assessment of a contemporary coal mining system
A contemporary underground coal mine in eastern Kentucky was assessed in order to determine potential off-site and on-site environmental impacts associated with the mining system in the given environmental setting. A 4 section, continuous room and pillor mine plan was developed for an appropriate site in eastern Kentucky. Potential environmental impacts were identified, and mitigation costs determined. The major potential environmental impacts were determined to be: acid water drainage from the mine and refuse site, uneven subsidence of the surface as a result of mining activity, and alteration of ground water aquifers in the subsidence zone. In the specific case examined, the costs of environmental impact mitigation to levels prescribed by regulations would not exceed $1/ton of coal mined, and post mining land values would not be affected
A methodology for the environmental assessment of advanced coal extraction systems
Procedures developed to identify and assess potential environment impacts of advanced mining technology as it moves from a generic concept to a more systems definition are described. Two levels of assessment are defined in terms of the design stage of the technology being evaluated. The first level of analysis is appropriate to a conceptual design. At this level it is assumed that each mining process has known and potential environmental impacts that are generic to each mining activity. By using this assumption, potential environmental impacts can be identified for new mining systems. When two or more systems have been assessed, they can be evaluated comparing potential environmental impacts. At the preliminary stage of design, a systems performance can be assessed again with more precision. At this level of systems definition, potential environmental impacts can be analyzed and their significane determined in a manner to facilitate comparisons between systems. At each level of analysis, suggestions calculated to help the designer mitigate potentially harmful impacts are provided
Business Process Re-Engineering Applied to the Air Force Institute of Technology Office of the Registrar, Records Management
This study analyzed the processes performed by the Officer Academic Education Repository at the Air Force Institute of Technology at Wright-Patterson Air Force Base, Ohio. Business Process Re-engineering (BPR) methodology was used to define tile existing processes. IDEFO (Integrated Computer Aided Manufacturing Definition Language) and Activity Based Costing techniques were used to map the flow of activities and to determine the costs for handling one education record. The cost for processing one education record averaged approximately $69.95. Under BPR, the functional expert team evaluates the existing processes to determine which processes are value-added and which are non-value added and generate to-be, or improved process model. The original intentions of this study were to comply with traditional BPR methodologies to develop the to-be model, however this did not occur due to various factors. The thesis team developed the to-be model and received validation from one of the functional team members. Because of the difficulties encountered by the thesis team in developing tile to-be model, tile conclusions presented include a section on lessons learned to assist future BPR efforts
Non-equilibrium dynamics: Studies of reflection of Bose-Einstein condensates
The study of the non-equilibrium dynamics in Bose-Einstein condensed gases
has been dominated by the zero-temperature, mean field Gross-Pitaevskii
formalism. Motivated by recent experiments on the reflection of condensates
from silicon surfaces, we revisit the so-called {\em classical field}
description of condensate dynamics, which incorporates the effects of quantum
noise and can also be generalized to include thermal effects. The noise is
included in a stochastic manner through the initial conditions. We show that
the inclusion of such noise is important in the quantitative description of the
recent reflection experiments
A tool for simulating and communicating uncertainty when modelling species distributions under future climates
Tools for exploring and communicating the impact of uncertainty on spatial prediction are urgently needed, particularly when projecting species distributions to future conditions.
We provide a tool for simulating uncertainty, focusing on uncertainty due to data quality. We illustrate the use of the tool using a Tasmanian endemic species as a case study. Our simulations provide probabilistic, spatially explicit illustrations of the impact of uncertainty on model projections. We also illustrate differences in model projections using six different global climate models and two contrasting emissions scenarios.
Our case study results illustrate how different sources of uncertainty have different impacts on model output and how the geographic distribution of uncertainty can vary.
Synthesis and applications: We provide a conceptual framework for understanding sources of uncertainty based on a review of potential sources of uncertainty in species distribution modelling; a tool for simulating uncertainty in species distribution models; and protocols for dealing with uncertainty due to climate models and emissions scenarios. Our tool provides a step forward in understanding and communicating the impacts of uncertainty on species distribution models under future climates which will be particularly helpful for informing discussions between researchers, policy makers, and conservation practitioners
Applied Remote Sensing Program (ARSP)
There are no author-identified significant results in this report
Exponential Divergence and Long Time Relaxation in Chaotic Quantum Dynamics
Phase space representations of the dynamics of the quantal and classical cat
map are used to explore quantum--classical correspondence in a K-system: as
, the classical chaotic behavior is shown to emerge smoothly and
exactly. The quantum dynamics near the classical limit displays both
exponential separation of adjacent distributions and long time relaxation, two
characteristic features of classical chaotic motion.Comment: 10 pages, ReVTeX, to appear in Phys. Rev. Lett. 13 figures NOT
included. Available either as LARGE (uuencoded gzipped) postscript files or
hard-copies from [email protected]
- …