18 research outputs found

    Scalar field "mini--MACHOs": a new explanation for galactic dark matter

    Full text link
    We examine the possibility that galactic halos are collisionless ensembles of scalar field ``massive compact halo objects'' (MACHOs). Using mass constraints from MACHO microlensing and from theoretical arguments on halos made up of massive black holes, as well as demanding also that scalar MACHO ensambles of all scales do not exhibit gravothermal instability (as required by consistency with observations of LSB galaxies), we obtain the range: m\alt 10^{-7} M_\odot or 30 M_\odot\alt m\alt 100 M_\odot. The rather narrow mass range of large MACHOs seems to indicate that the ensambles we are suggesting should be probably made up of scalar MACHOs in the low mass range (``mini--MACHOs''). The proposed model allows one to consider a non--baryonic and non--thermal fundamental nature of dark matter, while at the same time keeping the same phenomenology of the CDM paradigm.Comment: 5 pages, 1 eps figure. RevTex 4 style. To appear in Physical Review

    A MODEST review

    Get PDF
    We present an account of the state of the art in the fields explored by the research community invested in 'Modeling and Observing DEnse STellar systems'. For this purpose, we take as a basis the activities of the MODEST-17 conference, which was held at Charles University, Prague, in September 2017. Reviewed topics include recent advances in fundamental stellar dynamics, numerical methods for the solution of the gravitational N-body problem, formation and evolution of young and old star clusters and galactic nuclei, their elusive stellar populations, planetary systems, and exotic compact objects, with timely attention to black holes of different classes of mass and their role as sources of gravitational waves. Such a breadth of topics reflects the growing role played by collisional stellar dynamics in numerous areas of modern astrophysics. Indeed, in the next decade, many revolutionary instruments will enable the derivation of positions and velocities of individual stars in the Milky Way and its satellites and will detect signals from a range of astrophysical sources in different portions of the electromagnetic and gravitational spectrum, with an unprecedented sensitivity. On the one hand, this wealth of data will allow us to address a number of long-standing open questions in star cluster studies; on the other hand, many unexpected properties of these systems will come to light, stimulating further progress of our understanding of their formation and evolution.Comment: 42 pages; accepted for publication in 'Computational Astrophysics and Cosmology'. We are much grateful to the organisers of the MODEST-17 conference (Charles University, Prague, September 2017). We acknowledge the input provided by all MODEST-17 participants, and, more generally, by the members of the MODEST communit

    Congenital diplomyelia and hydromyelia in two calves

    No full text
    We describe two clinical cases of diplomyelia with hydromyelia in newborn calves. Both animals presented clinical signs of a general proprioceptive ataxia affecting the pelvic limbs. The most clear finding during clinical examination of the animals was an unilateral (case 1) or bilateral (case 2) absent patellar reflex. Only the second case was serologically tested positive for Schmallenberg virus, which is not a very likely aetiology. The cause of the spinal cord lesions in both calves remains unknown

    Congenital diplomyelia and hydromyelia in two calves

    No full text
    We describe two clinical cases of diplomyelia with hydromyelia in newborn calves. Both animals presented clinical signs of a general proprioceptive ataxia affecting the pelvic limbs. The most clear finding during clinical examination of the animals was an unilateral (case 1) or bilateral (case 2) absent patellar reflex. Only the second case was serologically tested positive for Schmallenberg virus, which is not a very likely aetiology. The cause of the spinal cord lesions in both calves remains unknown

    Sensor based time budgets in commercial Dutch dairy herds vary over lactation cycles and within 24 hours

    No full text
    Cows from 8 commercial Dutch dairy farms were equipped with 2 sensors to study their complete time budgets of eating, rumination, lying, standing and walking times as derived from a neck and a leg sensor. Daily sensor data of 1074 cows with 3201 lactations was used from 1 month prepartum until 10 months postpartum. Farms provided data over a 5 year period. The final models (lactational time budget and 24h time budget) showed significant effects of parity, farm and calving season. When primiparous cows were introduced in the lactational herd, they showed a decrease in lying time of 215 min (95% CI: 187–242) and an increase in standing time of 159 min (95% CI: 138–179), walking time of 23 min (95% CI: 20–26) and rumination time of 69 min (95% CI: 57–82). Eating time in primiparous cows increased from 1 month prepartum until 9 months in lactation with 88 min (95% CI: 76–101) and then remained stable until the end of lactation. Parity 2 and parity 3+ cows decreased in eating time by 30 min (95% CI: 20–40) and 26 min (95% CI: 18–33), respectively, from 1 month before to 1 month after calving. Until month 6, eating time increased 11 min (95% CI: 1–22) for parity 2, and 24 min (95% CI: 16–32) for parity 3+. From 1 month before calving to 1 month after calving, they showed an increase in ruminating of 17 min (95% CI: 6–28) and 28 min (95% CI: 21–35), an increase in standing time of 117 min (95% CI: 100–135) and 133 min (95% CI: 121–146), while lying time decreased with 113 min (95% CI: 91–136) and 130 min (95% CI: 114–146), for parity 2 and 3+, respectively. After month 1 in milk to the end of lactation, lying time increased 67 min (95% CI: 49–85) for parity 2, and 77 min (95% CI: 53–100) for parity 3+. Lactational time budget patterns are comparable between all 8 farms, but cows on conventional milking system (CMS) farms with pasture access appear to show higher standing and walking time, and spent less time lying compared to cows on automatic milking system (AMS) farms without pasture access. Every behavioral parameter presented a 24h pattern. Cows eat, stand and walk during the day and lie down and ruminate during the night. Daily patterns in time budgets on all farms are comparable except for walking time. During the day, cows on CMS farms with pasture access spent more time walking than cows on AMS farms without pasture access. The average 24h pattern between parities is comparable, but primiparous cows spent more time walking during daytime compared to older cows. These results indicate a specific behavioral pattern per parameter from the last month prepartum until 10 months postpartum with different patterns between parities but comparable patterns across farms. Furthermore, cows appear to have a circadian rhythm with varying time budgets in the transition period and during lactation

    Clinical, MRI, and histopathological findings of congenital focal diplomyelia at the level of L4 in a female crossbred calf

    Get PDF
    Background This case report describes the clinical signs of a calf with focal diplomyelia at the level of the fourth lumbar vertebra. Magnetic resonance imaging (MRI) images and histological findings of the affected spinal cord are included in this case report. This case differs from previously reported cases in terms of localization and minimal extent of the congenital anomaly, clinical symptoms and findings during further examinations. Case presentation The calf was presented to the Farm Animal Health clinic, Faculty of Veterinary Medicine, Utrecht University, with an abnormal, stiff, ‘bunny-hop’ gait of the pelvic limbs. Prominent clinical findings included general proprioceptive ataxia with paraparesis, pathological spinal reflexes of the pelvic limbs and pollakiuria. MRI revealed a focal dilated central canal, and mid-sagittal T2 hyperintense band in the dorsal part of the spinal cord at the level of the third to fourth lumbar vertebra. By means of histology, the calf was diagnosed with focal diplomyelia at the level of the fourth lumbar vertebra, a rare congenital malformation of the spinal cord. The calf tested positive for Schmallenberg virus antibodies, however this is not considered to be part of the pathogenesis of the diplomyelia. Conclusions This case report adds value to future clinical practice, as it provides a clear description of focal diplomyelia as a previously unreported lesion and details its diagnosis using advanced imaging and histology. This type of lesion should be included in the differential diagnoses when a calf is presented with a general proprioceptive ataxia of the hind limbs. In particular, a ‘bunny-hop’ gait of the pelvic limbs is thought to be a specific clinical symptom of diplomyelia. This case report is of clinical and scientific importance as it demonstrates the possibility of a focal microscopic diplomyelia, which would not be evident by gross examination alone, as a cause of hind-limb ataxia. The aetiology of diplomyelia in calves remains unclear

    Associations between body condition score, locomotion score, and sensor-based time budgets of dairy cattle during the dry period and early lactation

    Get PDF
    Lameness, one of the most important disorders in the dairy industry, is related to postpartum diseases and has an effect on dairy cow welfare, leading to changes in cows' daily behavioral variables. This study quantified the effect of lameness on the daily time budget of dairy cows in the transition period. In total, 784 multiparous dairy cows from 8 commercial Dutch dairy farms were visually scored on their locomotion (score of 1–5) and body condition (score of 1–5). Each cow was scored in the early and late dry period as well as in wk 4 and 8 postpartum. Cows with locomotion scores 1 and 2 were grouped together as nonlame, cows with score 3 were considered moderately lame, and cows with scores 4 and 5 were grouped together as severely lame. Cows were equipped with 2 types of sensors that measured behavioral parameters. The leg sensor provided number of steps, number of stand-ups (moving from lying to standing), lying time, number of lying bouts, and lying bout length. The neck sensor provided eating time, number of eating bouts, eating bout length, rumination time, number of rumination bouts, and rumination bout length. Sensor data for each behavioral parameter were averaged between 2 d before and 2 d after locomotion scoring. The percentage of nonlame cows decreased from 63% in the early dry period to 46% at 8 wk in lactation; this decrease was more severe for cows with higher parity. Cows that calved in autumn had the highest odds for lameness. Body condition score loss of >0.75 point in early lactation was associated with lameness in wk 4 postpartum. Moderately lame cows had a reduction of daily eating time of around 20 min, whereas severely lame cows had a reduction of almost 40 min. Similarly, moderately and severely lame dry cows showed a reduction of 200 steps/d, and severely lame cows in lactation showed a reduction of 600 steps/d. Daily lying time increased by 26 min and lying bout length increased by 8 min in severely lame cows compared with nonlame cows. These results indicate a high prevalence of lameness on Dutch dairy farms, with an increase in higher locomotion scores from the dry period into early lactation. Time budgets for multiparous dairy cows differed between the dry period and the lactating period, with a higher locomotion score (increased lameness) having an effect on cows' complete behavioral profile. Body condition score loss in early lactation was associated with poor locomotion postpartum, whereas lameness resulted in less eating time in the dry period and early lactation, creating a harmful cycle.</p

    Sensor based eating time variables of dairy cows in the transition periodrelated to the time to first service

    No full text
    In dairy cattle, reproductive diseases and infertility are some of the most important reasons for culling, where postpartum negative energy balance (NEB) reduces reproductive performance. This single cohort observational study reports the association between eating time and the interval between calving and first service in 2036 dairy cows on 17 commercial farms in The Netherlands. Cows were equipped with a commercially available neck sensor (Nedap, Groenlo, The Netherlands), that measured the time cows spent eating, from 28 days (d) before until 28 d after parturition. Primiparous cows spent a mean of +45 minutes (min) eating time per day ante partum and +15 min eating time post partum more than multiparous cows. A Cox proportional hazard model was used to analyze eating time variables in relation to the interval between calving and first service. From 4 weeks before until 4 weeks after calving eating time variables per week were used. Weeks -4, -3 + 3 and +4 were used as weeks with stable eating time patterns and therefore the mean eating time per week and the standard deviation of the mean eating time per week were used. Weeks -2, -1, +1 and +2 were addressed as periods with unstable eating patterns and therefore the slope in eating time per week and the residual variance of the slope per week were modeled. Significant results were the mean eating time in week -4 and +3 where in both weeks higher eating time lead to a higher hazard for first service. Difference between primiparous and multiparous cows were also significant with a higher hazard for first service for primiparous cows. Week 4 post partum presented a significant difference between eating time of primiparous cows and multiparous cows. These results display how eating time variables in the transition period could be related to the interval between calving and first service, and that there is a relation between mean eating time in week -4, +3, +4 and the interval between calving and first insemination.<br/
    corecore