6,407 research outputs found
kt Effects in Direct-Photon Production
We discuss the phenomenology of initial-state parton-kt broadening in
direct-photon production and related processes in hadron collisions. After a
brief summary of the theoretical basis for a Gaussian-smearing approach, we
present a systematic study of recent results on fixed-target and collider
direct-photon production, using complementary data on diphoton and pion
production to provide empirical guidance on the required amount of kt
broadening. This approach provides a consistent description of the observed
pattern of deviation of next-to-leading order QCD calculations relative to the
direct-photon data, and accounts for the shape and normalization difference
between fixed-order perturbative calculations and the data. We also discuss the
uncertainties in this phenomenological approach, the implications of these
results on the extraction of the gluon distribution of the nucleon, and the
comparison of our findings to recent related work.Comment: LaTeX, uses revtex and epsf, 37 pages, 15 figure
A simplified structure for the second order cosmological perturbation equations
Increasingly accurate observations of the cosmic microwave background and the
large scale distribution of galaxies necessitate the study of nonlinear
perturbations of Friedmann-Lemaitre cosmologies, whose equations are
notoriously complicated. In this paper we present a new derivation of the
governing equations for second order perturbations within the framework of the
metric-based approach that is minimal, as regards amount of calculation and
length of expressions, and flexible, as regards choice of gauge and
stress-energy tensor. Because of their generality and the simplicity of their
structure our equations provide a convenient starting point for determining the
behaviour of nonlinear perturbations of FL cosmologies with any given
stress-energy content, using either the Poisson gauge or the uniform curvature
gauge.Comment: 30 pages, no figures. Changed title to the one in published version
and some minor changes and addition
A Field Range Bound for General Single-Field Inflation
We explore the consequences of a detection of primordial tensor fluctuations
for general single-field models of inflation. Using the effective theory of
inflation, we propose a generalization of the Lyth bound. Our bound applies to
all single-field models with two-derivative kinetic terms for the scalar
fluctuations and is always stronger than the corresponding bound for slow-roll
models. This shows that non-trivial dynamics can't evade the Lyth bound. We
also present a weaker, but completely universal bound that holds whenever the
Null Energy Condition (NEC) is satisfied at horizon crossing.Comment: 16 page
Targeting the master regulator mTOR: A new approach to prevent the neurological of consequences of parasitic infections?
© 2017 The Author(s). A systematic analysis of 240 causes of death in 2013 revealed that parasitic diseases were responsible for more than one million deaths. The vast majority of these fatalities resulted from protozoan infections presenting with neurological sequelae. In the absence of a vaccine, development of effective therapies is essential to improving global public health. In 2015, an intriguing strategy to prevent cerebral malaria was proposed by Gordon et al. 2015 mBio, 6:e00625. Their study suggested that inhibition of the mammalian target of rapamycin prevented experimental cerebral malaria by blocking the damage to the blood brain barrier and stopping the accumulation of parasitized red blood cells and T cells in the brain. Here, we hypothesize that the same therapeutic strategy could be adopted for other protozoan infections with a brain tropism, to prevent cerebral parasitosis by limiting pathogen replication and preventing immune mediated destruction of brain tissue
Heavy Quark Mass Effects in Deep Inelastic Scattering and Global QCD Analysis
A new implementation of the general PQCD formalism of Collins, including
heavy quark mass effects, is described. Important features that contribute to
the accuracy and efficiency of the calculation of both neutral current (NC) and
charged current (CC) processess are explicitly discussed. This new
implementation is applied to the global analysis of the full HERA I data sets
on NC and CC cross sections, with correlated systematic errors, in conjunction
with the usual fixed-target and hadron collider data sets. By using a variety
of parametrizations to explore the parton parameter space, robust new parton
distribution function (PDF) sets (CTEQ6.5) are obtained. The new quark
distributions are consistently higher in the region x ~ 10^{-3} than previous
ones, with important implications on hadron collider phenomenology, especially
at the LHC. The uncertainties of the parton distributions are reassessed and
are compared to the previous ones. A new set of CTEQ6.5 eigenvector PDFs that
encapsulates these uncertainties is also presented.Comment: 32 pages, 12 figures; updated, Publication Versio
Examination of direct-photon and pion production in proton-nucleon collisions
We present a study of inclusive direct-photon and pion production in hadronic
interactions, focusing on a comparison of the ratio of gamma/pi0 yields with
expectations from next-to-leading order perturbative QCD (NLO pQCD). We also
examine the impact of a phenomenological model involving k_T smearing (which
approximates effects of additional soft-gluon emission) on absolute predictions
for photon and pion production and their ratio.Comment: 20 pages, 12 figures. Minor changes in wording and in figure
Homozygous knockout of the piezo1 gene in the zebrafish is not associated with anemia
We have now examined the erythroid phenotype in this zebrafish strain carrying a ZFN genomic knockout of piezo1. Genotyping was performed as previously described. In contrast to the anemic phenotype observed in zebrafish subjected to morpholino knockdown of piezo, the genomic ZFN knockout of piezo1 did not segregate either with anemia in the 3-dpf embryo or with dysmorphic erythrocyte morphology in the adult fish
A New Scintillator Tile/Fiber Preshower Detector for the CDF Central Calorimeter
A detector designed to measure early particle showers has been installed in
front of the central CDF calorimeter at the Tevatron. This new preshower
detector is based on scintillator tiles coupled to wavelength-shifting fibers
read out by multi-anode photomultipliers and has a total of 3,072 readout
channels. The replacement of the old gas detector was required due to an
expected increase in instantaneous luminosity of the Tevatron collider in the
next few years. Calorimeter coverage, jet energy resolution, and electron and
photon identification are among the expected improvements. The final detector
design, together with the R&D studies that led to the choice of scintillator
and fiber, mechanical assembly, and quality control are presented. The detector
was installed in the fall 2004 Tevatron shutdown and started collecting
colliding beam data by the end of the same year. First measurements indicate a
light yield of 12 photoelectrons/MIP, a more than two-fold increase over the
design goals.Comment: 5 pages, 10 figures (changes are minor; this is the final version
published in IEEE-Trans.Nucl.Sci.
Prompt photons at RHIC
We calculate the inclusive cross section for prompt photon production in
heavy-ion collisions at RHIC energies ( GeV and
GeV) in the central rapidity region including next-to-leading order,
, radiative corrections, initial state nuclear
shadowing and parton energy loss effects. We show that there is a significant
suppression of the nuclear cross section, up to at
GeV, due to shadowing and medium induced parton energy loss effects. We find
that the next-to-leading order contributions are large and have a strong
dependence.Comment: 9 pages, 5 figures, expanded discussion of the K facto
High Q^2 Deep Inelastic Scattering at HERA
High Q^2 NC and CC cross-sections as measured at HERA can give information on
two distinct areas of current interest. Firstly, supposing that all the
electroweak parameters are well known, these cross-sections may be used to give
information on parton distributions at high x and high Q^2. Secondly, supposing
that parton distributions are well known, after evolution in Q^2 from the
kinematic regime where they are already measured, these cross-sections can be
used to give information on electroweak parameters in a process where the
exchanged boson is `spacelike' rather than `timelike'. WG1 addressed itself to
clarifying the limits of our present and possible future knowledge on both
these areas.Comment: 26 pages, 12 figures. Uses iopart.cls, iopart12.clo, axodraw.sty.
Report of WG1 of the 3rd UK Phenomenology Workshop on HERA Physics, Durham
1998. To be published in Journal of Physics
- …