3 research outputs found

    Cytotoxic activity of crude extracts from Datura stramonium’s fungal endophytes against A549 lung carcinoma and UMG87 glioblastoma cell lines and LC-QTOF-MS/MS based metabolite profiling

    Get PDF
    Abstract : Background: Endophytic fungi are a proven source of bioactive secondary metabolites that may provide lead compounds for novel drug discovery. In this study, crude extracts from fungal endophytes isolated from Datura stramonium were evaluated for cytotoxic activity on two human cancer cell lines. Methods: Fungal endophytes were isolated from surface sterilized aerial parts of D. stramonium and identified using molecular, morphological and phylogenetic methods. Ethyl acetate crude extracts from these isolates were evaluated for cytotoxic activity on A549 lung carcinoma and UMG87 glioblastoma cell lines. Metabolite profiling was then performed by liquid chromatography coupled to quadrupole time-of-flight with tandem mass spectrometry (LC-QTOF-MS/MS) for the cytotoxic crude extract. Results: Eleven fungal endophytes were identified from D. stramonium. Significant cytotoxicity was only observed from the crude extract of Alternaria sp. KTDL7 on UMG87 glioblastoma cells (IC50 = 21.49 μg/ml). Metabolite profiling of this crude extract tentatively revealed the presence of the following secondary metabolites: 1,8-dihydroxynaphthalene (1), anserinone B (2), phelligridin B (3), metacytofilin (4), phomopsidin (5) and vermixocin A (6). Compounds 2 and 3 have been shown to be cytotoxic in literature. Conclusion: The findings in this study suggest that the crude extract of Alternaria sp. KTDL7 possesses compound(s) cytotoxic to glioblastoma multiforme cells. Future studies to isolate and characterize the cytotoxic compound(s) from this fungus could result in lead development of a fungal-based drug for glioblastoma multiforme treatment

    Identification of MAMP-Responsive Plasma Membrane-Associated Proteins in Arabidopsis thaliana Following Challenge with Different LPS Chemotypes from Xanthomonas campestris

    No full text
    Lipopolysaccharides (LPS) are recognized as microbe-associated molecular patterns (MAMPs) responsible for eliciting defense-related responses and while the effects have been well-documented in mammals, there is a lack of knowledge regarding the mechanism of perception in plant systems and recognized structural moieties within the macromolecular lipoglycan structure. Thus, identification of the LPS plasma membrane (PM) receptor(s)/receptor complex in Arabidopsis thaliana through proteomics will contribute to a deeper understanding of induced defense responses. As such, structurally characterized LPS chemotypes from Xanthomonas campestris pv. campestris (Xcc) wild-type 8004 (prototypical smooth-type LPS) and mutant 8530 (truncated core with no O–chain) strains were utilized to pre-treat A. thaliana plants. The associated proteomic response/changes within the PM were compared over a 24 h period using mass spectrometry-based methodologies following three variants of LPS-immobilized affinity chromatography. This resulted in the identification of proteins from several functional categories, but importantly, those involved in perception and defense. The distinct structural features between wild-type and mutant LPS are likely responsible for the differential changes to the proteome profiles, and many of the significant proteins were identified in response to the wild-type Xcc LPS where it is suggested that the core oligosaccharide and O-chain participate in recognition by receptor-like kinases (RLKs) in a multiprotein complex and, notably, varied from that of the mutant chemotype
    corecore