48 research outputs found

    Assigning channels via the meet-in-the-middle approach

    Full text link
    We study the complexity of the Channel Assignment problem. By applying the meet-in-the-middle approach we get an algorithm for the \ell-bounded Channel Assignment (when the edge weights are bounded by \ell) running in time O((2+1)n)O^*((2\sqrt{\ell+1})^n). This is the first algorithm which breaks the (O())n(O(\ell))^n barrier. We extend this algorithm to the counting variant, at the cost of slightly higher polynomial factor. A major open problem asks whether Channel Assignment admits a O(cn)O(c^n)-time algorithm, for a constant cc independent of \ell. We consider a similar question for Generalized T-Coloring, a CSP problem that generalizes \CA. We show that Generalized T-Coloring does not admit a 22o(n)poly(r)2^{2^{o\left(\sqrt{n}\right)}} {\rm poly}(r)-time algorithm, where rr is the size of the instance.Comment: SWAT 2014: 282-29

    Dynamic Range Majority Data Structures

    Full text link
    Given a set PP of coloured points on the real line, we study the problem of answering range α\alpha-majority (or "heavy hitter") queries on PP. More specifically, for a query range QQ, we want to return each colour that is assigned to more than an α\alpha-fraction of the points contained in QQ. We present a new data structure for answering range α\alpha-majority queries on a dynamic set of points, where α(0,1)\alpha \in (0,1). Our data structure uses O(n) space, supports queries in O((lgn)/α)O((\lg n) / \alpha) time, and updates in O((lgn)/α)O((\lg n) / \alpha) amortized time. If the coordinates of the points are integers, then the query time can be improved to O(lgn/(αlglgn)+(lg(1/α))/α))O(\lg n / (\alpha \lg \lg n) + (\lg(1/\alpha))/\alpha)). For constant values of α\alpha, this improved query time matches an existing lower bound, for any data structure with polylogarithmic update time. We also generalize our data structure to handle sets of points in d-dimensions, for d2d \ge 2, as well as dynamic arrays, in which each entry is a colour.Comment: 16 pages, Preliminary version appeared in ISAAC 201

    Partial Sums on the Ultra-Wide Word RAM

    Full text link
    We consider the classic partial sums problem on the ultra-wide word RAM model of computation. This model extends the classic ww-bit word RAM model with special ultrawords of length w2w^2 bits that support standard arithmetic and boolean operation and scattered memory access operations that can access ww (non-contiguous) locations in memory. The ultra-wide word RAM model captures (and idealizes) modern vector processor architectures. Our main result is a new in-place data structure for the partial sum problem that only stores a constant number of ultraword in addition to the input and supports operations in doubly logarithmic time. This matches the best known time bounds for the problem (among polynomial space data structures) while improving the space from superlinear to a constant number of ultrawords. Our results are based on a simple and elegant in-place word RAM data structure, known as the Fenwick tree. Our main technical contribution is a new efficient parallel ultra-wide word RAM implementation of the Fenwick tree, which is likely of independent interest.Comment: Extended abstract appeared at TAMC 202

    PARENT QUERIES OVER DYNAMIC BALANCED PARENTHESIS STRINGS

    No full text

    Dynamic nested brackets

    Get PDF
    We consider the problem of maintaining a string of n brackets '('or')' under the operation reverse(i) that changes the ith bracket from '('to')' or vice versa, and returns 'yes' if and only if the resulting string is properly balanced. We show that this problem can be solved on the RAM in time O(log n/log log n) per operation using linear space and preprocessing. Moreover, we show that this is optimal in the sense that every data structure supporting reverse (no matter its space and preprocessing complexity) needs time Omega(Iog n/log log n) per operation in the cell probe model. (C) 2004 Elsevier Inc. All rights reserved

    Multivariate Analysis of Orthogonal Range Searching and Graph Distances Parameterized by Treewidth

    No full text
    We show that the eccentricities, diameter, radius, and Wiener index of an undirected nn-vertex graph with nonnegative edge lengths can be computed in time O(n(k+lognk)2kk2logn)O(n\cdot \binom{k+\lceil\log n\rceil}{k} \cdot 2^k k^2 \log n), where kk is the treewidth of the graph. For every ϵ>0\epsilon>0, this bound is n1+ϵexpO(k)n^{1+\epsilon}\exp O(k), which matches a hardness result of Abboud, Vassilevska Williams, and Wang (SODA 2015) and closes an open problem in the multivariate analysis of polynomial-time computation. To this end, we show that the analysis of an algorithm of Cabello and Knauer (Comp. Geom., 2009) in the regime of non-constant treewidth can be improved by revisiting the analysis of orthogonal range searching, improving bounds of the form logdn\log^d n to (d+lognd)\binom{d+\lceil\log n\rceil}{d}, as originally observed by Monier (J. Alg. 1980). We also investigate the parameterization by vertex cover number

    The first parameterized algorithms and computational experiments challenge

    No full text
    \u3cbr/\u3eIn this article, the steering committee of the Parameterized Algorithms and Computational Experiments challenge (PACE) reports on the first iteration of the challenge. Where did PACE come from, how did it go, who won, and what's next

    Sparsification upper and lower bounds for graphs problems and not-all-equal SAT

    No full text
    We present several sparsification lower and upper bounds for classic problems in graph theory and logic. For the problems 4-Coloring, (Directed) Hamiltonian Cycle, and (Connected) Dominating Set, we prove that there is no polynomial-time algorithm that reduces any n-vertex input to an equivalent instance, of an arbitrary problem, with bitsize O(n^{2-epsilon}) for epsilon > 0, unless NP is a subset of coNP/poly and the polynomial-time hierarchy collapses. These results imply that existing linear-vertex kernels for k-Nonblocker and k-Max Leaf Spanning Tree (the parametric duals of (Connected) Dominating Set) cannot be improved to have O(k^{2-epsilon}) edges, unless NP is a subset of NP/poly. We also present a positive result and exhibit a non-trivial sparsification algorithm for d-Not-All-Equal-SAT. We give an algorithm that reduces an n-variable input with clauses of size at most d to an equivalent input with O(n^{d-1}) clauses, for any fixed d. Our algorithm is based on a linear-algebraic proof of Lovász that bounds the number of hyperedges in critically 3-chromatic d-uniform n-vertex hypergraphs by binom{n}{d-1}. We show that our kernel is tight under the assumption that NP is not a subset of NP/poly

    Cell-Probe Proofs

    No full text
    corecore