3 research outputs found

    ProCC: Progressive Cross-primitive Consistency for Open-World Compositional Zero-Shot Learning

    Full text link
    Open-World Compositional Zero-shot Learning (OW-CZSL) aims to recognize novel compositions of state and object primitives in images with no priors on the compositional space, which induces a tremendously large output space containing all possible state-object compositions. Existing works either learn the joint compositional state-object embedding or predict simple primitives with separate classifiers. However, the former heavily relies on external word embedding methods, and the latter ignores the interactions of interdependent primitives, respectively. In this paper, we revisit the primitive prediction approach and propose a novel method, termed Progressive Cross-primitive Consistency (ProCC), to mimic the human learning process for OW-CZSL tasks. Specifically, the cross-primitive consistency module explicitly learns to model the interactions of state and object features with the trainable memory units, which efficiently acquires cross-primitive visual attention and avoids cross-primitive feasibility scores. Moreover, considering the partial-supervision setting (pCZSL) as well as the imbalance issue of multiple tasks prediction, we design a progressive training paradigm to enable the primitive classifiers to interact to obtain discriminative information in an easy-to-hard manner. Extensive experiments on three widely used benchmark datasets demonstrate that our method outperforms other representative methods on both OW-CZSL and pCZSL settings by

    DRPT: Disentangled and Recurrent Prompt Tuning for Compositional Zero-Shot Learning

    Full text link
    Compositional Zero-shot Learning (CZSL) aims to recognize novel concepts composed of known knowledge without training samples. Standard CZSL either identifies visual primitives or enhances unseen composed entities, and as a result, entanglement between state and object primitives cannot be fully utilized. Admittedly, vision-language models (VLMs) could naturally cope with CZSL through tuning prompts, while uneven entanglement leads prompts to be dragged into local optimum. In this paper, we take a further step to introduce a novel Disentangled and Recurrent Prompt Tuning framework termed DRPT to better tap the potential of VLMs in CZSL. Specifically, the state and object primitives are deemed as learnable tokens of vocabulary embedded in prompts and tuned on seen compositions. Instead of jointly tuning state and object, we devise a disentangled and recurrent tuning strategy to suppress the traction force caused by entanglement and gradually optimize the token parameters, leading to a better prompt space. Notably, we develop a progressive fine-tuning procedure that allows for incremental updates to the prompts, optimizing the object first, then the state, and vice versa. Meanwhile, the optimization of state and object is independent, thus clearer features can be learned to further alleviate the issue of entangling misleading optimization. Moreover, we quantify and analyze the entanglement in CZSL and supplement entanglement rebalancing optimization schemes. DRPT surpasses representative state-of-the-art methods on extensive benchmark datasets, demonstrating superiority in both accuracy and efficiency

    Graph Knows Unknowns: Reformulate Zero-Shot Learning as Sample-Level Graph Recognition

    No full text
    Zero-shot learning (ZSL) is an extreme case of transfer learning that aims to recognize samples (e.g., images) of unseen classes relying on a train-set covering only seen classes and a set of auxiliary knowledge (e.g., semantic descriptors). Existing methods usually resort to constructing a visual-to-semantics mapping based on features extracted from each whole sample. However, since the visual and semantic spaces are inherently independent and may exist in different manifolds, these methods may easily suffer from the domain bias problem due to the knowledge transfer from seen to unseen classes. Unlike existing works, this paper investigates the fine-grained ZSL from a novel perspective of sample-level graph. Specifically, we decompose an input into several fine-grained elements and construct a graph structure per sample to measure and utilize element-granularity relations within each sample. Taking advantage of recently developed graph neural networks (GNNs), we formulate the ZSL problem to a graph-to-semantics mapping task, which can better exploit element-semantics correlation and local sub-structural information in samples. Experimental results on the widely used benchmark datasets demonstrate that the proposed method can mitigate the domain bias problem and achieve competitive performance against other representative methods
    corecore