7,676 research outputs found

    Non-Gaussian wave functionals in Coulomb gauge Yang--Mills theory

    Full text link
    A general method to treat non-Gaussian vacuum wave functionals in the Hamiltonian formulation of a quantum field theory is presented. By means of Dyson--Schwinger techniques, the static Green functions are expressed in terms of the kernels arising in the Taylor expansion of the exponent of the vacuum wave functional. These kernels are then determined by minimizing the vacuum expectation value of the Hamiltonian. The method is applied to Yang--Mills theory in Coulomb gauge, using a vacuum wave functional whose exponent contains up to quartic terms in the gauge field. An estimate of the cubic and quartic interaction kernels is given using as input the gluon and ghost propagators found with a Gaussian wave functional.Comment: 27 pages, 21 figure

    Ground state for a massive scalar field in BTZ spacetime with Robin boundary conditions

    Full text link
    We consider a real, massive scalar field in BTZ spacetime, a 2+1-dimensional black hole solution of the Einstein's field equations with a negative cosmological constant. First, we analyze the space of classical solutions in a mode decomposition and we characterize the collection of all admissible boundary conditions of Robin type which can be imposed at infinity. Secondly, we investigate whether, for a given boundary condition, there exists a ground state by constructing explicitly its two-point function. We demonstrate that for a subclass of the boundary conditions it is possible to construct a ground state that locally satisfies the Hadamard property. In all other cases, we show that bound state mode solutions exist and, therefore, such construction is not possible.Comment: 17 pages, 3 figure

    Mode solutions for a Klein-Gordon field in anti-de Sitter spacetime with dynamical boundary conditions of Wentzell type

    Full text link
    We study a real, massive Klein-Gordon field in the Poincar\'e fundamental domain of the (d+1)(d+1)-dimensional anti-de Sitter (AdS) spacetime, subject to a particular choice of dynamical boundary conditions of generalized Wentzell type, whereby the boundary data solves a non-homogeneous, boundary Klein-Gordon equation, with the source term fixed by the normal derivative of the scalar field at the boundary. This naturally defines a field in the conformal boundary of the Poincar\'e fundamental domain of AdS. We completely solve the equations for the bulk and boundary fields and investigate the existence of bound state solutions, motivated by the analogous problem with Robin boundary conditions, which are recovered as a limiting case. Finally, we argue that both Robin and generalized Wentzell boundary conditions are distinguished in the sense that they are invariant under the action of the isometry group of the AdS conformal boundary, a condition which ensures in addition that the total flux of energy across the boundary vanishes.Comment: 12 pages, 1 figure. In V3: refs. added, introduction and conclusions expande

    Quantum field theory on rotating black hole spacetimes

    Get PDF
    This thesis is concerned with the development of a general method to compute renormalised local observables for quantum matter fields, in a given quantum state, on a rotating black hole spacetime. The rotating black hole may be surrounded by a Dirichlet mirror, if necessary, such that a regular, isometry-invariant vacuum state can be defined. We focus on the case of a massive scalar field on a (2+1)-dimensional rotating black hole, but the method can be extended to other types of matter fields and higher-dimensional rotating black holes. The Feynman propagator of the matter field in the regular, isometry-invariant state is written as a sum over mode solutions on the complex Riemannian section of the black hole. A Hadamard renormalisation procedure is implemented at the level of the Feynman propagator by expressing its singular part as a sum over mode solutions on the complex Riemannian section of rotating Minkowski spacetime. This allows us to explicitly renormalise local observables such as the vacuum polarisation of the quantum field. The method is applied to the vacuum polarisation of a real massive scalar field on a (2+1)-dimensional warped AdS3 black hole surrounded by a mirror. Selected numerical results are presented, demonstrating the numerical efficacy of the method. The existence of classical superradiance and the classical linear mode stability of the warped AdS3 black hole to massive scalar field perturbations are also analysed.Comment: PhD thesis submitted to the University of Nottingha
    • …
    corecore