1,241 research outputs found

    Identity Work, Humour and Disciplinary Power

    Get PDF
    How are people’s identities disciplined by their talk about humour? Based on an ethnographic study of a New York food co-operative, we show how members’ talk about appropriate and inappropriate uses of humour disciplined their identity work. The principal contribution we make is twofold. First, we show that in their talk about humour people engaged in three types of identity work: homogenizing, differentiating and personalizing. These were associated with five practices of talk which constructed Co-op members as strong organizational identifiers, respectful towards others, flexible rule followers, not ‘too’ serious or self-righteous, and as autonomous individuals. Second, we analyse how this identity work (re)produced norms regulating the use of humour to fabricate conformist selves. Control, we argue, is not simply a matter of managers or other elites seeking to tighten the iron cage through corporate colonization to manufacture consent; rather, all organizational members are complicit in defining discourses, subject positions and appropriate conduct through discursive processes that are distributed and self-regulatory

    Identity Work, Humour and Disciplinary Power

    Get PDF
    How are people’s identities disciplined by their talk about humour? Based on an ethnographic study of a New York food co-operative, we show how members’ talk about appropriate and inappropriate uses of humour disciplined their identity work. The principal contribution we make is twofold. First, we show that in their talk about humour people engaged in three types of identity work: homogenizing, differentiating and personalizing. These were associated with five practices of talk which constructed co-op members as strong organizational identifiers, respectful towards others, flexible rule followers, not ‘too’ serious or self-righteous, and as autonomous individuals. Second, we analyse how this identity work (re)produced norms regulating the use of humour to fabricate conformist selves. Control, we argue, is not simply a matter of managers or other elites seeking to tighten the iron cage through corporate colonization to manufacture consent; rather, all organizational members are complicit in defining discourses, subject positions and appropriate conduct through discursive processes that are distributed and self-regulatory.</jats:p

    Visualization of positive and negative sense viral RNA for probing the mechanism of direct-acting antivirals against hepatitis C virus

    Get PDF
    RNA viruses are highly successful pathogens and are the causative agents for many important diseases. To fully understand the replication of these viruses it is necessary to address the roles of both positive-strand RNA ((+)RNA) and negative-strand RNA ((-)RNA), and their interplay with viral and host proteins. Here we used branched DNA (bDNA) fluorescence in situ hybridization (FISH) to stain both the abundant (+)RNA and the far less abundant (-)RNA in both hepatitis C virus (HCV)- and Zika virus-infected cells, and combined these analyses with visualization of viral proteins through confocal imaging. We were able to phenotypically examine HCV-infected cells in the presence of uninfected cells and revealed the effect of direct-acting antivirals on HCV (+)RNA, (-)RNA, and protein, within hours of commencing treatment. Herein, we demonstrate that bDNA FISH is a powerful tool for the study of RNA viruses that can provide insights into drug efficacy and mechanism of action

    High salt intake augments excitability of PVN neurons in rats: Role of the endoplasmic reticulum Ca\u3csup\u3e2+\u3c/sup\u3e store

    Get PDF
    High salt (HS) intake sensitizes central autonomic circuitry leading to sympathoexcitation. However, its underlying mechanisms are not fully understood. We hypothesized that inhibition of PVN endoplasmic reticulum (ER) Ca2+ store function would augment PVN neuronal excitability and sympathetic nerve activity (SNA). We further hypothesized that a 2% (NaCl) HS diet for 5 weeks would reduce ER Ca2+ store function and increase excitability of PVN neurons with axon projections to the rostral ventrolateral medulla (PVN-RVLM) identified by retrograde label. PVN microinjection of the ER Ca2+ ATPase inhibitor thapsigargin (TG) increased SNA and mean arterial pressure (MAP) in a dose-dependent manner in rats with a normal salt (NS) diet (0.4%NaCl). In contrast, sympathoexcitatory responses to PVN TG were significantly (p \u3c 0.05) blunted in HS treated rats compared to NS treatment. In whole cell current-clamp recordings from PVN-RVLM neurons, graded current injections evoked graded increases in spike frequency. Maximum discharge was significantly augmented (p \u3c 0.05) by HS diet compared to NS group. Bath application of TG (0.5 μM) increased excitability of PVN-RVLM neurons in NS (p \u3c 0.05), yet had no significant effect in HS rats. Our data indicate that HS intake augments excitability of PVN-RVLM neurons. Inhibition of the ER Ca2+ ATPase and depletion of Ca2+ store likely plays a role in increasing PVN neuronal excitability, which may underlie the mechanisms of sympathoexcitation in rats with chronic HS intake

    Histone-Binding of DPF2 Mediates Its Repressive Role in Myeloid Differentiation

    Get PDF
    Double plant homeodomain finger 2 (DPF2) is a highly evolutionarily conserved member of the d4 protein family that is ubiquitously expressed in human tissues and was recently shown to inhibit the myeloid differentiation of hematopoietic stem/progenitor and acute myelogenous leukemia cells. Here, we present the crystal structure of the tandem plant homeodomain finger domain of human DPF2 at 1.6-Ã… resolution. We show that DPF2 interacts with the acetylated tails of both histones 3 and 4 via bipartite binding pockets on the DPF2 surface. Blocking these interactions through targeted mutagenesis of DPF2 abolishes its recruitment to target chromatin regions as well as its ability to prevent myeloid differentiation in vivo. Our findings suggest that the histone binding of DPF2 plays an important regulatory role in the transcriptional program that drives myeloid differentiation

    Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run

    Get PDF
    The determination of exoplanet properties and occurrence rates using Kepler data critically depends on our knowledge of the fundamental properties (such as temperature, radius and mass) of the observed stars. We present revised stellar properties for 197,096 Kepler targets observed between Quarters 1-17 (Q1-17), which were used for the final transiting planet search run by the Kepler Mission (Data Release 25, DR25). Similar to the Q1--16 catalog by Huber et al. the classifications are based on conditioning published atmospheric parameters on a grid of Dartmouth isochrones, with significant improvements in the adopted methodology and over 29,000 new sources for temperatures, surface gravities or metallicities. In addition to fundamental stellar properties the new catalog also includes distances and extinctions, and we provide posterior samples for each stellar parameter of each star. Typical uncertainties are ~27% in radius, ~17% in mass, and ~51% in density, which is somewhat smaller than previous catalogs due to the larger number of improved logg constraints and the inclusion of isochrone weighting when deriving stellar posterior distributions. On average, the catalog includes a significantly larger number of evolved solar-type stars, with an increase of 43.5% in the number of subgiants. We discuss the overall changes of radii and masses of Kepler targets as a function of spectral type, with particular focus on exoplanet host stars.Comment: 19 pages, 13 figures. ApJS in pres

    Experimental high-dimensional entanglement certification and quantum steering with time-energy measurements

    Full text link
    High-dimensional entanglement provides unique ways of transcending the limitations of current approaches in quantum information processing, quantum communications based on qubits. The generation of time-frequency qudit states offer significantly increased quantum capacities while keeping the number of photons constant, but pose significant challenges regarding the possible measurements for certification of entanglement. Here, we develop a new scheme and experimentally demonstrate the certification of 24-dimensional entanglement and a 9-dimensional quantum steering. We then subject our photon-pairs to dispersion conditions equivalent to the transmission through 600-km of fiber and still certify 21-dimensional entanglement. Furthermore, we use a steering inequality to prove 7-dimensional entanglement in a semi-device independent manner, proving that large chromatic dispersion is not an obstacle in distributing and certifying high-dimensional entanglement and quantum steering. Our highly scalable scheme is based on commercial telecommunication optical fiber components and recently developed low-jitter high-efficiency single-photon detectors, thus opening new pathways towards advanced large-scale quantum information processing and high-performance, noise-tolerant quantum communications with time-energy measurementsComment: 30 pages, 4 figure

    K2-97b: A (Re-?)Inflated Planet Orbiting a Red Giant Star

    Get PDF
    Strongly irradiated giant planets are observed to have radii larger than thermal evolution models predict. Although these inflated planets have been known for over 15 years, it is unclear whether their inflation is caused by the deposition of energy from the host star or the inhibited cooling of the planet. These processes can be distinguished if the planet becomes highly irradiated only when the host star evolves onto the red giant branch. We report the discovery of K2-97b, a 1.31 ± 0.11 R_J, 1.10 ± 0.11 M_J planet orbiting a 4.20 ± 0.14 R⊙, 1.16 ± 0.12 M⊙ red giant star with an orbital period of 8.4 days. We precisely constrained stellar and planetary parameters by combining asteroseismology, spectroscopy, and granulation noise modeling along with transit and radial velocity measurements. The uncertainty in planet radius is dominated by systematic differences in transit depth, which we measure to be up to 30% between different light-curve reduction methods. Our calculations indicate the incident flux on this planet was 170^(+140)_(-60) times the incident flux on Earth, while the star was on the main sequence. Previous studies suggest that this incident flux is insufficient to delay planetary cooling enough to explain the present planet radius. This system thus provides the first evidence that planets may be inflated directly by incident stellar radiation rather than by delayed loss of heat from formation. Further studies of planets around red giant branch stars will confirm or contradict this hypothesis and may reveal a new class of re-inflated planets

    Ages for exoplanet host stars

    Full text link
    Age is an important characteristic of a planetary system, but also one that is difficult to determine. Assuming that the host star and the planets are formed at the same time, the challenge is to determine the stellar age. Asteroseismology provides precise age determination, but in many cases the required detailed pulsation observations are not available. Here we concentrate on other techniques, which may have broader applicability but also serious limitations. Further development of this area requires improvements in our understanding of the evolution of stars and their age-dependent characteristics, combined with observations that allow reliable calibration of the various techniques.Comment: To appear in "Handbook of Exoplanets", eds. Deeg, H.J. & Belmonte, J.A, Springer (2018
    • …
    corecore