29 research outputs found

    Applications of correlated photon pairs : sub-shot noise interferometry and entanglement

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2006.Includes bibliographical references (p. 89-95).Using cesium atoms weakly coupled to a low-finesse cavity, we have generated photon pairs that are highly correlated in a non-classical way, as demonstrated by a large violation of the Cauchy-Schwartz inequality G = 760 +2100 -320 for a bin width T = 60 ns. Biphoton interferometry of the correlated pairs via the Holland-Burnett scheme holds promise to demonstrate precision beyond the shot noise limit, although the current interference fringe visibility of [beta]= 0.84 ± 0.04 only translates to a shot noise limited phase uncertainty. Polarization-time entangled pairs can also be directly generated, by optically pumping the atoms to both F = 3, mF = ±3 ground states. The degree of entanglement, expressed by the calculated fidelity f = 0.81 ± 0.09 and calculated Bell state parameter S = 2.3 ± 0.2, is estimated to be finite but not maximal.by Huanqian Loh.S.B

    Coherent Microwave Control of Ultracold 23^{23}Na40^{40}K Molecules

    Get PDF
    We demonstrate coherent microwave control of rotational and hyperfine states of trapped, ultracold, and chemically stable 23^{23}Na40^{40}K molecules. Starting with all molecules in the absolute rovibrational and hyperfine ground state, we study rotational transitions in combined magnetic and electric fields and explain the rich hyperfine structure. Following the transfer of the entire molecular ensemble into a single hyperfine level of the first rotationally excited state, J=1J{=}1, we observe collisional lifetimes of more than 3s3\, \rm s, comparable to those in the rovibrational ground state, J=0J{=}0. Long-lived ensembles and full quantum state control are prerequisites for the use of ultracold molecules in quantum simulation, precision measurements and quantum information processing.Comment: 5 pages, 4 figure

    Laser-induced fluorescence studies of HfF+ produced by autoionization

    Get PDF
    Autoionization of Rydberg states of HfF, prepared using the optical-optical double resonance (OODR) technique, holds promise to create HfF+ in a particular Zeeman level of a rovibronic state for an electron electric dipole moment (eEDM) search. We characterize a vibronic band of Rydberg HfF at 54 cm-1 above the lowest ionization threshold and directly probe the state of the ions formed from this vibronic band by performing laser-induced fluorescence (LIF) on the ions. The Rydberg HfF molecules show a propensity to decay into only a few ion rotational states of a given parity and are found to preserve their orientation qualitatively upon autoionization. We show empirically that we can create 30% of the total ion yield in a particular |J+,M+> state and present a simplified model describing autoionization from a given Rydberg state that assumes no angular dynamics.Comment: 8 pages, 5 figure

    D1 magic wavelength tweezers for scaling atom arrays

    Full text link
    D1 magic wavelengths have been predicted for the alkali atoms but are not yet observed to date. We experimentally confirm a D1 magic wavelength that is predicted to lie at 615.87 nm for 23^{23}Na, which we then use to trap and image individual atoms with 80.0(6)% efficiency and without having to modulate the trapping and imaging light intensities. We further demonstrate that the mean loading efficiency remains as high as 74.2(7)% for a 1D array of eight atoms. Leveraging on the absence of trap intensity modulation and lower trap depths afforded by the D1 light, we achieve an order-of-magnitude reduction on the tweezer laser power requirements and a corresponding increase in the scalability of atom arrays. The methods reported here are applicable to all the alkalis, including those that are attractive candidates for dipolar molecule assembly, Rydberg dressing, or are fermionic in nature

    Precision Spectroscopy of Polarized Molecules in an Ion Trap

    Get PDF
    Polar molecules are desirable systems for quantum simulations and cold chemistry. Molecular ions are easily trapped, but a bias electric field applied to polarize them tends to accelerate them out of the trap. We present a general solution to this issue by rotating the bias field slowly enough for the molecular polarization axis to follow but rapidly enough for the ions to stay trapped. We demonstrate Ramsey spectroscopy between Stark-Zeeman sublevels in 180Hf19F+ with a coherence time of 100 ms. Frequency shifts arising from well-controlled topological (Berry) phases are used to determine magnetic g-factors. The rotating-bias-field technique may enable using trapped polar molecules for precision measurement and quantum information science, including the search for an electron electric dipole moment.Comment: Accepted to Scienc

    Resonant dipolar collisions of ultracold molecules induced by microwave dressing

    Full text link
    We demonstrate microwave dressing on ultracold, fermionic 23{}^{23}Na40{}^{40}K ground-state molecules and observe resonant dipolar collisions with cross sections exceeding three times the ss-wave unitarity limit. The origin of these collisions is the resonant alignment of the approaching molecules' dipoles along the intermolecular axis, which leads to strong attraction. We explain our observations with a conceptually simple two-state picture based on the Condon approximation. Furthermore, we perform coupled-channels calculations that agree well with the experimentally observed collision rates. While collisions are observed here as laser-induced loss, microwave dressing on chemically stable molecules trapped in box potentials may enable the creation of strongly interacting dipolar gases of molecules.Comment: 6 pages, 4 figure

    Proposal for observing Yang-Lee criticality in Rydberg atomic arrays

    Full text link
    Yang-Lee edge singularities (YLES) are the edges of the partition function zeros of an interacting spin model in the space of complex control parameters. They play an important role in understanding non-Hermitian phase transitions in many-body physics, as well as characterizing the corresponding non-unitary criticality.Even though such partition function zeroes have been measured in dynamical experiments where time acts as the imaginary control field, experimentally demonstrating such YLES criticality with a physical imaginary field has remained elusive due to the difficulty of physically realizing non-Hermitian many-body models. We provide a protocol for observing the YLES by detecting kinked dynamical magnetization responses due to broken PT symmetry, thus enabling the physical probing of non-unitary phase transitions in non-equilibrium settings. In particular, scaling analyses based on our non-unitary time evolution circuit with matrix product states (tMPS) accurately recover the exponents uniquely associated with the corresponding non-unitary CFT. We provide an explicit proposal for observing YLES criticality in Floquet quenched Rydberg atomic arrays with laser-induced loss, which paves the way towards an universal platform for simulating non-Hermitian many-body dynamical phenomena.Comment: 19 pages, 11 figure
    corecore