7,532 research outputs found

    Sound propagation in and low frequency noise absorption by helium-filled porous material

    Get PDF
    Low-frequency noise is difficult to deal with by traditional porous material due to its inherent high acoustic impedance. This study seeks to extend the effective range of sound absorption to lower frequencies by filling a low density gas, such as helium, in the porous material. Compared with conventional air-filled absorption material, the helium-filled porous material has a much reduced characteristic impedance; hence, a good impedance matching with pure air becomes more feasible at low frequencies. The acoustic properties of a series of helium-filled porous materials are investigated with a specially designed test rig. The characteristic of the sound propagation in a helium-filled porous material is established and validated experimentally. Based on the measured acoustic properties, the sound absorption performance of a helium-filled absorber (HA) of finite thickness is studied numerically as well as experimentally. For a random incidence field, the HA is found to perform much better than the air-filled absorber at low frequencies. The main advantage of HA lies in the middle range of oblique incidence angles where wave refraction in the absorber enhances sound absorption. The advantage of HA as duct lining is demonstrated both numerically and experimentally. © 2009 Acoustical Society of America.published_or_final_versio

    Reactive control of subsonic axial fan noise in a duct

    Get PDF
    published_or_final_versio

    A clinically relevant in vivo model for the assessment of scaffold efficacy in abdominal wall reconstruction

    Get PDF
    Copyright © The Author(s) 2017. An animal model that allows for assessment of the degree of stretching or contraction of the implant area and the in vivo degradation properties of biological meshes is required to evaluate their performance in vivo. Adult New Zealand rabbits underwent full thickness subtotal unilateral rectus abdominis muscle excision and were reconstructed with the non-biodegradable Peri-Guard®, Prolene® or biodegradable Surgisis® meshes. Following 8 weeks of recovery, the anterior abdominal wall tissue samples were collected for measurement of the implant dimensions. The Peri-Guard and Prolene meshes showed a slight and obvious shrinkage, respectively, whereas the Surgisis mesh showed stretching, resulting in hernia formation. Surgisis meshes showed in vivo biodegradation and increased collagen formation. This surgical rabbit model for abdominal wall defects is advantageous for evaluating the in vivo behaviour of surgical meshes. Implant area stretching and shrinkage were detected corresponding to mesh properties, and histological analysis and stereological methods supported these findings.This study was financially supported by the Enterprise Ireland (Technology Development Grant). This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) and is co-funded under the European Regional Development Fund under grant no. 13/RC/2073. This study was also supported by the Centre for Microscopy & Imaging funded by NUI Galway and PRTLI, Cycles 4 and 5, National Development Plan 2007–2013

    Single-trial laser-evoked potentials feature extraction for prediction of pain perception

    Get PDF
    Pain is a highly subjective experience, and the availability of an objective assessment of pain perception would be of great importance for both basic and clinical applications. The objective of the present study is to develop a novel approach to extract pain-related features from single-trial laser-evoked potentials (LEPs) for classification of pain perception. The single-trial LEP feature extraction approach combines a spatial filtering using common spatial pattern (CSP) and a multiple linear regression (MLR). The CSP method is effective in separating laser-evoked EEG response from ongoing EEG activity, while MLR is capable of automatically estimating the amplitudes and latencies of N2 and P2 from single-trial LEP waveforms. The extracted single-trial LEP features are used in a Naïve Bayes classifier to classify different levels of pain perceived by the subjects. The experimental results show that the proposed single-trial LEP feature extraction approach can effectively extract pain-related LEP features for achieving high classification accuracy.published_or_final_versio

    An incremental shifting vector approach for reliability-based design optimization

    Full text link
    © 2015, Springer-Verlag Berlin Heidelberg. This paper proposes a decoupling algorithm for reliability-based design optimization (RBDO) with high performance in terms of efficiency and convergence, which provides an effective tool for reliability design of many complex structures. The algorithm proceeds by performing a shifting vector calculation and then solving a deterministic design optimization in each step, and eventually converges to the optimal solution. An incremental shifting strategy is proposed to ensure stable convergence in the iteration process. In each step, the shifting vector preserves the information from the previous step, and only an adjustment is made for it through a shifting vector increment. A computation method is given for the shifting vector increment, avoiding solving an optimization problem during the reliability analysis and thus greatly reducing the computational cost of the iteration process. Six numerical examples and two engineering applications are presented to validate the effectiveness of the method proposed in this paper

    Primary biliary cirrhosis and scleroderma complicated by Barrett's oesophagus A case report

    Get PDF
    Oesophageal problems are common in patients with scleroderma. but the association of primary biliary cirrhosis and scleroderma is uncommon. A Barrett's oesophagus identified in a patient with primary biliary cirrhosis and scleroderma is described. The Barrett's oesophagus was probably a complication of scleroderma and resulted from low lower-oesophageal sphincter pressure and severe gastro-oesophageal reflux

    Performance evaluation of Bragg coherent diffraction imaging

    Get PDF
    In this study,we present a numerical framework for modeling three-dimensional (3D) diffraction data in Bragg coherent diffraction imaging (BraggCDI) experiments and evaluating the quality of obtained 3D complex-valued real-space images recovered by reconstruction algorithms under controlled conditions. The approach is used to systematically explore the performance and the detection limit of this phase-retrieval-based microscopy tool. The numerical investigation suggests that the superb performance of Bragg CDI is achieved with an oversampling ratio above 30 and a detection dynamic range above 6 orders. The observed performance degradation subject to the data binning processes is also studied. This numerical tool can be used to optimize experimental parameters and has the potential to significantly improve the throughput of Bragg CDI method

    Single-trial detection of visual evoked potentials by common spatial patterns and wavelet filtering for brain-computer interface

    Get PDF
    Event-related potentials (ERPs) are widely used in brain-computer interface (BCI) systems as input signals conveying a subject's intention. A fast and reliable single-trial ERP detection method can be used to develop a BCI system with both high speed and high accuracy. However, most of single-trial ERP detection methods are developed for offline EEG analysis and thus have a high computational complexity and need manual operations. Therefore, they are not applicable to practical BCI systems, which require a low-complexity and automatic ERP detection method. This work presents a joint spatial-time-frequency filter that combines common spatial patterns (CSP) and wavelet filtering (WF) for improving the signal-to-noise (SNR) of visual evoked potentials (VEP), which can lead to a single-trial ERP-based BCI.published_or_final_versio

    Characterisation of diesel vehicle emissions and determination of remote sensing cutpoints for diesel high-emitters

    Full text link
    © 2019 Elsevier Ltd Diesel vehicles are a major source of air pollutants in cities and have caused significant health risks to the public globally. This study used both on-road remote sensing and transient chassis dynamometer to characterise emissions of diesel light goods vehicles. A large sample size of 183 diesel vans were tested on a transient chassis dynamometer to evaluate the emission levels of in-service diesel vehicles and to determine a set of remote sensing cutpoints for diesel high-emitters. The results showed that 79% and 19% of the Euro 4 and Euro 5 diesel vehicles failed the transient cycle test, respectively. Most of the high-emitters failed the NO limits, while no vehicle failed the HC limits and only a few vehicles failed the CO limits. Vehicles that failed NO limits occurred in both old and new vehicles. NO/CO2 ratios of 57.30 and 22.85 ppm/% were chosen as the remote sensing cutpoints for Euro 4 and Euro 5 high-emitters, respectively. The cutpoints could capture a Euro 4 and Euro 5 high-emitter at a probability of 27% and 57% with one snapshot remote sensing measurement, while only producing 1% of false high-emitter detections. The probability of high-emitting events was generally evenly distributed over the test cycle, indicating that no particular driving condition produced a higher probability of high-emitting events. Analysis on the effect of cutpoints on real-driving diesel fleet was carried out using a three-year remote sensing program. Results showed that 36% of Euro 4 and 47% of Euro 5 remote sensing measurements would be detected as high-emitting using the proposed cutpoints. In-service diesel vehicles emit low CO and HC but high NO
    corecore