184 research outputs found

    Airframe noise prediction evaluation

    Get PDF
    The objective of this study is to evaluate the accuracy and adequacy of current airframe noise prediction methods using available airframe noise measurements from tests of a narrow body transport (DC-9) and a wide body transport (DC-10) in addition to scale model test data. General features of the airframe noise from these aircraft and models are outlined. The results of the assessment of two airframe prediction methods, Fink's and Munson's methods, against flight test data of these aircraft and scale model wind tunnel test data are presented. These methods were extensively evaluated against measured data from several configurations including clean, slat deployed, landing gear-deployed, flap deployed, and landing configurations of both DC-9 and DC-10. They were also assessed against a limited number of configurations of scale models. The evaluation was conducted in terms of overall sound pressure level (OASPL), tone corrected perceived noise level (PNLT), and one-third-octave band sound pressure level (SPL)

    Experimental Study on the Adsorption of Heavy Metal Ions in Wastewater by Modified Bentonite

    Get PDF
    This is an article in the field of ceramics and composites. In order to study the adsorption effect of modified bentonite on heavy metal ions in sewage, the effects of pH value, initial concentration, time, solid-liquid ratio, temperature and particle size on the adsorption effect of bentonite were analyzed. And microscopic means were used to study the changes of the internal mineral composition of the bentonite before and after the adsorption of heavy metal ions and the change law of the infrared spectra. The results showed that when the modified bentonite content was 0.2 g, the adsorption time was 1.5 h, the temperature was set to 40 ℃, the pH value was set to 6, the initial concentration was set to 200 mg/L and the solid-to-liquid ratio was set to 0.8 g/L, the adsorption effect was the best. After the modified bentonite had undergone an adsorption test, an obvious CuSO4 diffraction peak could be detected. However, other mineral components inside the modified bentonite remained unchanged, which also showed that the modified bentonite could effectively adsorb copper ions in sewage

    Altered Local and Large-Scale Dynamic Functional Connectivity Variability in Posttraumatic Stress Disorder: A Resting-State fMRI Study

    Get PDF
    Posttraumatic stress disorder (PTSD) is a psychiatric condition that can emerge after exposure to an exceedingly traumatic event. Previous neuroimaging studies have indicated that PTSD is characterized by aberrant resting-state functional connectivity (FC). However, few existing studies on PTSD have examined dynamic changes in resting-state FC related to network formation, interaction, and dissolution over time. In this study, we compared the dynamic resting-state local and large-scale FC between PTSD patients (n = 22) and healthy controls (HC; n = 22; conducted as standard deviation in resting-state local and large-scale FC over a series of sliding windows). Local dynamic FC was examined by calculating the dynamic regional homogeneity (dReHo), and large-scale dynamic FC (dFC) was investigated between regions with significant dReHo group differences. For the PTSD patients, we also investigated the relationship between symptom severity and dFC/dReHo. Our results showed that PTSD patients were characterized by I) increased dynamic (more variable) dReHo in left precuneus (PCu); II) increased dynamic (more variable) dFC between the left PCu and left insula; and III) decreased dFC between left PCu and left inferior parietal lobe (IPL), and decreased dFC between left PCu and right PCu. However, there is no significant correlation between the clinical indicators and dReHo/dFC after the family-wise-error (FWE) correction. These findings provided the initial evidence that PTSD is characterized by aberrant patterns of fluctuating communication within brain system such as the default mode network (DMN) and among different brain systems such as the salience network and the DMN

    Type-A quasi-periodic oscillation in the black hole transient MAXI J1348-630

    Full text link
    We present a detailed analysis of the spectral and timing characteristics of a 7-Hz type-A quasi-periodic oscillation (QPO) detected in NICER observations of the black hole X-ray binary MAXI J1348-630 during its high-soft state. The QPO is broad and weak, with an integrated fractional rms amplitude of 0.9 per cent in the 0.5-10 keV band. Thanks to the large effective area of NICER, combined with the high flux of the source and a relatively long accumulative exposure time, we construct the first rms and phase-lag spectra for a type-A QPO. Our analysis reveals that the fractional rms amplitude of the QPO increases with energy from below 1 per cent at 1 keV to 3 per cent at 6 keV. The shape of the QPO spectrum is similar to that of the Comptonised component, suggesting that the Comptonised region is driving the variability. The phase lags at the QPO frequency are always soft taking the lowest energy as reference. By jointly fitting the time-averaged spectrum of the source and the rms and phase-lag spectra of the QPO with the time-dependent Comptonisation model vkompthdk, we find that the radiative properties of the type-A QPO can be explained by a vertically extended Comptonised region with a size of 2300 km.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    Type-A quasi-periodic oscillation in the black hole transient MAXI J1348-630

    Get PDF
    We present a detailed analysis of the spectral and timing characteristics of a 7-Hz type-A quasi-periodic oscillation (QPO) detected in NICER observations of the black hole X-ray binary MAXI J1348-630 during its high-soft state. The QPO is broad and weak, with an integrated fractional rms amplitude of 0.9 per cent in the 0.5-10 keV band. Thanks to the large effective area of NICER, combined with the high flux of the source and a relatively long accumulative exposure time, we construct the first rms and phase-lag spectra for a type-A QPO. Our analysis reveals that the fractional rms amplitude of the QPO increases with energy from below 1 per cent at 1 keV to ∼3 per cent at 6 keV. The shape of the QPO spectrum is similar to that of the Comptonized component, suggesting that the Comptonized region is driving the variability. The phase lags at the QPO frequency are always soft taking the lowest energy as reference. By jointly fitting the time-averaged spectrum of the source and the rms and phase-lag spectra of the QPO with the time-dependent Comptonization model vkompthdk, we find that the radiative properties of the type-A QPO can be explained by a vertically extended Comptonized region with a size of ∼2300 km.</p

    Are intrinsic neural timescales related to sensory processing? Evidence from abnormal behavioral states

    Get PDF
    The brain exhibits a complex temporal structure which translates into a hierarchy of distinct neural timescales. An open question is how these intrinsic timescales are related to sensory or motor information processing and whether these dynamics have common patterns in different behavioral states. We address these questions by investigating the brain\u27s intrinsic timescales in healthy controls, motor (amyotrophic lateral sclerosis, locked-in syndrome), sensory (anesthesia, unresponsive wakefulness syndrome), and progressive reduction of sensory processing (from awake states over N1, N2, N3). We employed a combination of measures from EEG resting-state data: auto-correlation window (ACW), power spectral density (PSD), and power-law exponent (PLE). Prolonged neural timescales accompanied by a shift towards slower frequencies were observed in the conditions with sensory deficits, but not in conditions with motor deficits. Our results establish that the spontaneous activity\u27s intrinsic neural timescale is related to the neural capacity that specifically supports sensory rather than motor information processing in the healthy brain

    Are intrinsic neural timescales related to sensory processing? Evidence from abnormal behavioral states

    Get PDF
    The brain exhibits a complex temporal structure which translates into a hierarchy of distinct neural timescales. An open question is how these intrinsic timescales are related to sensory or motor information processing and whether these dynamics have common patterns in different behavioral states. We address these questions by investigating the brain\u27s intrinsic timescales in healthy controls, motor (amyotrophic lateral sclerosis, locked-in syndrome), sensory (anesthesia, unresponsive wakefulness syndrome), and progressive reduction of sensory processing (from awake states over N1, N2, N3). We employed a combination of measures from EEG resting-state data: auto-correlation window (ACW), power spectral density (PSD), and power-law exponent (PLE). Prolonged neural timescales accompanied by a shift towards slower frequencies were observed in the conditions with sensory deficits, but not in conditions with motor deficits. Our results establish that the spontaneous activity\u27s intrinsic neural timescale is related to the neural capacity that specifically supports sensory rather than motor information processing in the healthy brain

    Are intrinsic neural timescales related to sensory processing? Evidence from abnormal behavioral states

    Get PDF
    The brain exhibits a complex temporal structure which translates into a hierarchy of distinct neural timescales. An open question is how these intrinsic timescales are related to sensory or motor information processing and whether these dynamics have common patterns in different behavioral states. We address these questions by investigating the brain\u27s intrinsic timescales in healthy controls, motor (amyotrophic lateral sclerosis, locked-in syndrome), sensory (anesthesia, unresponsive wakefulness syndrome), and progressive reduction of sensory processing (from awake states over N1, N2, N3). We employed a combination of measures from EEG resting-state data: auto-correlation window (ACW), power spectral density (PSD), and power-law exponent (PLE). Prolonged neural timescales accompanied by a shift towards slower frequencies were observed in the conditions with sensory deficits, but not in conditions with motor deficits. Our results establish that the spontaneous activity\u27s intrinsic neural timescale is related to the neural capacity that specifically supports sensory rather than motor information processing in the healthy brain
    • …
    corecore