23 research outputs found

    The four-tank benchmark: a simple solution by embedded model control

    Get PDF
    The four-tank benchmark is a multivariate and nonlinear control problem which has been widely studied in the literature. Two pairs of tanks in series are supplied by two pumps. Under certain configurations, the Embedded Model Control approach provides a simple decoupled solution by separately controlling the two output tank levels and treating the input flow as a partly unknown disturbance. Neglected dynamics in a form of unknown delays both in sensors and actuator dynamics is considered. The core of the control unit is a discrete-time embedded model consisting of unknown disturbance dynamics and partly known nonlinear interactions. The embedded model is driven by the plant command and by a feedback vector which is retrieved from the model error. The feedback is capable of keeping updated the unknown disturbance prediction, ready to be cancelled by the control law. The control gains are tuned using two sets of closed-loop eigenvalues in order to trade-off between disturbance rejection and robust stability. Simulated runs under different tank interactions prove design effectiveness

    The four-tank control problem: Comparison of two disturbance rejection control solutions

    Get PDF
    The paper aims to compare and prove a pair of disturbance/uncertainty rejection control laws for the well-known four tank control problems. Control requirements are expressed in terms of a set point sequence as it usual in the literature. Uncertainty class is defined as the union of four sub-classes: unknown disturbance, parametric uncertainty, measurement errors and neglected dynamics. Modelling and design allow insight of the dynamic properties of the problem. They are formulated by a pair of theorems which fix the range of application. Theorem are confirmed by the results simulated runs, and indicate the correct way to further broaden control design applicability. Disturbance rejection (better uncertainty) design is deployed using the Embedded Model Control methodology: only unknown disturbance and parametric uncertainty can be rejected, whereas neglected dynamics effects must be filtered. As a result, simple performance and stability inequality can be formulated in the frequency domain and lead to closed-loop pole placement. Inequalities are such to reveal whether pole placement is feasible and how feasibility can be recovered, an issue which at authors knowledge is rarely encountered in the literature. Simulated runs prove the design procedure

    The mediating effect of resilience and COVID-19 anxiety on the relationship between social support and insomnia among healthcare workers: a cross-sectional study

    Get PDF
    BackgroundInsomnia in healthcare workers has become a topic of concern in the health system. The high infectivity and longevity of the COVID-19 pandemic have resulted in great pressure and a high incidence of insomnia among healthcare workers. Insomnia among healthcare workers has a negative impact on high-quality healthcare services in addition to their health. Thus, it's necessary to explore insomnia's underlying mechanisms.ObjectThe present research's aims were threefold: explored the association between social support, resilience, COVID-19 anxiety, and insomnia among healthcare workers during the pandemic, elucidated the underlying mechanism of insomnia, and offered recommendations for improving the health of these workers.Materials and methodsA cross-sectional design was adopted. From May 20 to 30, 2022, 1038 healthcare workers were selected to fill out the Oslo 3-item Social Support Scale, the eight-item Athens Insomnia Scale, the Coronavirus Anxiety Scale, and the Brief Resilience Scale. Descriptive statistics and correlations were analyzed by SPSS 25.0. Mediation analysis was conducted by Mplus 8.3 using 5000 bootstrap samples.ResultsOf the participating 1038 healthcare workers, the prevalence of insomnia was 41.62% (432/1038). Significant associations were found involving insomnia, resilience, COVID-19 anxiety, and social support. Insomnia was directly affected by social support. Moreover, three indirect pathways explain how social support affected insomnia: resilience's mediating role, COVID-19 anxiety's mediating role, and the chain-mediation role of resilience and COVID-19 anxiety.ConclusionThe results validated our hypotheses and supported the opinion of Spielman et al. ‘s three-factor model of insomnia. Social support of healthcare workers has an indirect impact on insomnia in addition to its direct one via independent and chain-mediation effects of resilience and COVID-19 anxiety

    The four-tank benchmark: a simple solution by embedded model control

    No full text
    The four-tank benchmark is a multivariate and nonlinear control problem which has been widely studied in the literature. Two pairs of tanks in series are supplied by two pumps. Under certain configurations, the Embedded Model Control approach provides a simple decoupled solution by separately controlling the two output tank levels and treating the input flow as a partly unknown disturbance. Neglected dynamics in a form of unknown delays both in sensors and actuator dynamics is considered. The core of the control unit is a discrete-time embedded model consisting of unknown disturbance dynamics and partly known nonlinear interactions. The embedded model is driven by the plant command and by a feedback vector which is retrieved from the model error. The feedback is capable of keeping updated the unknown disturbance prediction, ready to be cancelled by the control law. The control gains are tuned using two sets of closed-loop eigenvalues in order to trade-off between disturbance rejection and robust stability. Simulated runs under different tank interactions prove design effectiveness

    A Novel Fuzzy Model Predictive Control of a Gas Turbine in the Combined Cycle Unit

    No full text
    The complex characteristics of the gas turbine in a combined cycle unit have brought great difficulties in its control process. Meanwhile, the increasing emphasis on the efficiency, safety, and cleanliness of the power generation process also makes it significantly important to put forward advanced control strategies to satisfy the desired control demands of the gas turbine system. Therefore, aiming at higher control performance of the gas turbine in the gas-steam combined cycle process, a novel fuzzy model predictive control (FMPC) strategy based on the fuzzy selection mechanism and simultaneous heat transfer search (SHTS) algorithm is presented in this paper. The objective function of rolling optimization in this novel FMPC consists of two parts which represent the state optimization and output optimization. In the weight coefficient selection of those two parts, the fuzzy selection mechanism is introduced to overcome the uncertainties existing in the system. Furthermore, on account of the rapidity of the control process, the SHTS algorithm is used to solve the optimization problem rather than the traditional quadratic programming method. The validity of the proposed method is confirmed through simulation experiments of the gas turbine in a combined power plant. The simulation results demonstrate the remarkable superiorities of the adopted algorithm with higher control precision and stronger disturbance rejection ability as well as less optimization time

    A New State of Charge Estimation Algorithm for Lithium-Ion Batteries Based on the Fractional Unscented Kalman Filter

    No full text
    An accurate state of charge (SOC) estimation is the basis of the Battery Management System (BMS). In this paper, a new estimation method which considers fractional calculus is proposed to estimate the lithium battery state of charge. Firstly, a modified second-order RC model based on fractional calculus theory is developed to model the lithium battery characteristics. After that, a pulse characterization test is implemented to obtain the battery terminal voltage and current, in which the parameter identification is completed based on least square method. Furthermore, the proposed method based on Fractional Unscented Kalman Filter (FUKF) algorithm is applied to estimate the battery state of charge value in both static and dynamic battery discharging experiment. The experimental results have demonstrated that the proposed method shows high accuracy and efficiency for state of charge estimation and the fractional calculus contributes to the battery state of charge estimation
    corecore