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 

Abstract—The four-tank benchmark is a multivariate and 
nonlinear control problem which has been widely studied in the 
literature. Two pairs of tanks in series are supplied by two 
pumps. Under certain configurations, the Embedded Model 
Control approach provides a simple decoupled solution by 
separately controlling the two output tank levels and treating 
the input flow as a partly unknown disturbance. Neglected 
dynamics in a form of unknown delays both in sensors and 
actuator dynamics is considered. The core of the control unit is a 
discrete-time embedded model consisting of unknown 
disturbance dynamics and partly known nonlinear interactions. 
The embedded model is driven by the plant command and by a 
feedback vector which is retrieved from the model error. The 
feedback is capable of keeping updated the unknown 
disturbance prediction, ready to be cancelled by the control law. 
The control gains are tuned using two sets of closed-loop 
eigenvalues in order to trade-off between disturbance rejection 
and robust stability. Simulated runs under different tank 
interactions prove design effectiveness. 

I. INTRODUCTION 

The classical four-tank benchmark in Fig. 1, initially 
proposed by Johansson in [1], is a test platform for comparing 
control strategies. The benchmark problem is a representation 
of multivariable control instances [2]. The problem has been 
investigated with laboratory tests by several scholars [3], [4].  
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Fig. 1. Four-tank benchmark layout. 
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To deal with the issue of coupling and nonlinearity, various 
control approaches have been applied and their performance 
compared [5]. Two kinds of decentralized PI controllers were  
designed and validated in [6], [7]. To deal with minimum and 
non-minimum phase behavior, improved PID controllers 
were investigated in [8]. The four-tank benchmark problem 
provided a test-bed for validating model predictive control 
approach [9]. Different decentralized control strategies were 
proposed in [10]. A model predictive controller was designed 
and tested in [11]. A fast gradient-based distributed 
optimization approach was applied in [12]. A nonlinear 
generalized predictive control and a back-stepping approach 
were designed and tested in [13]. Besides the model 
predictive control, nonlinear control approach was also 
employed. A two-level control algorithm was developed in 
[14]. Nonlinear approach and dynamic optimization were 
validated in [15]. Feedback linearization with sliding mode 
algorithm was proposed in [16]. A fractional-order sliding 
mode controller was designed in [17]. A fuzzy modified 
model reference adaptive control approach was proposed in 
[18]. To deal with the multivariable dead times, decentralized 
integral controllability and time-domain bounds on closed 
loop performance were derived and discussed in [19].  

Concerning perturbations in the process parameters and 
external disturbances, the active disturbance rejection control 
approach based on the concept of flatness was proposed in 
[20]. Other studies refer to simulation [21] and 
fault-diagnosis [22]. Most of the approaches focused on 
continuous-time control design. Modern implementation of 
controllers is discrete-time. An optimal discrete-time 
controller was proposed in [23].  

The embedded model control (EMC for short, [24]) to be 
employed here, is a model-based approach centered on the 
inclusion in the control unit of a discrete-time model 
(embedded model, EM for short) of the controllable dynamics 
and of the disturbance to be rejected. The method has been 
applied to space control systems [25] and to other engineering 
applications. 

The objective of the paper is to propose a simple solution to 
the four-tank benchmark using Embedded Model Control. 
We restrict to the case in which the dynamics of the four-tank 
benchmark is minimum phase. It corresponds to a stable 
zero-dynamics as pointed out in [20]. Under this restriction 
the controllable dynamics can be decoupled into two first 
order integrators (the output tanks #1 and #2 in Fig. 1), 
endowed with their own disturbance dynamics. The dynamics 
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of the input tanks (#3 and #4 in Fig. 1) are included in the EM 
to estimate the input flow to the output tanks. The input tank 
level is not directly controlled, which prevents to 
accommodate non-minimum phase conditions. The complete 
solution will be subject of a future paper. Though restricted, 
the solution shows the simplicity of the EMC approach and 
how the whole range of uncertainty can be effectively treated.  

The paper is organized as follows. In Section II, the 
four-tank state equations are recalled, and the uncertainty 
classes are defined. The zero-dynamic properties are obtained 
from a disturbance rejection control law. In Section III, by 
restricting to the case of a stable zero dynamics, the EM is 
derived as a set of four decoupled integrators each endowed 
with disturbance dynamics. The noise estimator is designed 
as a static feedback as in standard observers because of the 
decoupled controllable dynamics. The control law is then 
obtained. In Section IV, the noise estimator gains and the 
feedback control gains are tuned by fixing the closed loop 
eigenvalues. Asymptotic closed-loop transfer functions are 
employed to the purpose [26]. Simulation results are 
presented in Section V. Section VI concludes the paper. 

II. MODEL AND UNCERTAINTY 

A. State equations and Uncertainty 

With reference to in Fig. 1, there are four tanks and their 
levels are measured by four pressure sensors. The tanks are 
supplied by two valves and two pumps, which are fed by the 
source tank. The fluid from the source tank is pumped into the 
#1 Tank and the #4 Tank through the pump a. The valve a is 
employed to separate the water into the #1 Tank with a 
fraction γa, and the #4 Tank with 1-γa. Symmetrically, the 
fluid from pump b is fed into the #2 Tank with a fraction γb, 
and the #3 Tank with 1-γb. Furthermore, the fluid in the #3 
Tank flows into the #1 Tank, and then returns to the source 
tank, while the fluid in the #4 Tank discharges into the #2 
Tank, and then discharges into the source tank. The variables 
to be controlled are the fluid levels of the #1 Tank and of the 
#2 Tank. Correspondingly, there are two control inputs: the 
flow qa and qb supplied by the pump a and pump b, 
respectively.  

Based on mass balance and Bernoulli’s law, the nonlinear 
dynamics of the four-tank process has the following affine 
state equations: 

 

          
         

   

0

max max

,  0

,  

0 ,0

u d

y

x t Ap x t Bq t q t x x

y t Cx t e t z t Fx t

x t x q t q





    

   

   



  (1) 

where x  is the tank fluid level (m), p  is the tank discharge 
rate (m/s), q  is the command flow (m3/s), dq  is the unknown 
flow (m/s) whose signal class is described by a stationary 
stochastic process having bounded spectral density and 
variance, y  is the measured tank level (m), e  is the 
measurement error, and z  is the performance variable to be 
controlled (the output tank level). Tank level and command 
flow are bounded. The zero limit of the tank level only 

corresponds to the level which does provide zero output flow 
p . Actuator and sensor delays are accounted for by u  and 

y . Vector components and the expression of 
, 1, 2,3,4kp k  , are given below: 
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  (2) 

The state equation matrices are the following  
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All the parameters are uncertain but bounded. Given a generic 
parameter , 1, ,j j N   , the uncertainty is written as 
follows: 

  , ,max1 ,j j nom j j j         (4) 

where πj, nom is the nominal value which is known to control 
designer and δπj is the bounded fractional uncertainty. The 
parameter εk  in 1k kc    accounts for scale factor errors.  

The input relation with the discrete-time (DT) command 
q(i) is the following conversion: 
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where ρh, h = a, b is the quantization level obtained from the 
flow range maxhq  in (1) and the integer range uN , and i  
denotes a DT instant ti=iT, T  being the control time unit. The 
following conversion defines the output y(i) used by the 
control unit: 
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Equations (5) and (6) are responsible of command and 
measurement quantization errors. The former ones are 
accounted for by the unknown disturbance qd in (1). The latter 
ones by the output error e in (1).  

Problem formulation. Given a set Zref  of piecewise constant 
reference trajectories zk,ref (t), k=1, 2 for the fluid levels xk, 
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k=1,2 guarantees that the ‘true’ tracking error ek,ref(t)= zk,ref(t)
－xk(t) be bounded by: 
  , ,max 1,k ref k s j je t e t t t       (7) 

where tj is the constant application time and s  is the settling 
time interval. The above inequality must hold within the class 
of uncertainty previously defined. □ 

B. Control Law and Zero Dynamics 

In response to the above problem, it is assumed that a 
constant reference xk,ref (t), k=1, 2 is exactly tracked by xk, 
k=1,2, which implies the disturbance rejection control law: 
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By replacing (8) in (1), a new state equation of xk, k=3, 4, is 
obtained, which using  
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and assuming Sk=S, can be rewritten in terms of the flow rates 
pk(xk) as follows:  

2
3 3 4 3

12 2 22
3 3 33 3

2
4 444 3 4

222 2
44 4

1 1
,

b b

aa

b a
b a

b a

p p p p
p

a a ap dS

p dpg p p p p
aa a

 



 
 

 

    
                                  

 
 




(10) 

where the terms dk  are combinations of the components of qd 
in (1). The following propositions from [20] help the analysis 
of (10). 

Proposition 1. Given a flow rate ρ* bounded as in (1) and a 
command u* satisfying (8) under qd=0, given the perturbation 
δp=p－p*, the perturbation equation of (10) holds:  
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The equation is asymptotically stable if and only if  

 1a b   . (12) 

Proof. The proof of (11) follows from (10) and (8). The 
inequality (12) is obtained from the characteristic polynomial 
of the state matrix. □ 

Proposition 2. Under the control law (8), (1) is transformed 
into the following normal form [27] which consists of  
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In (13), zk, k=1, 2, is the performance variable to be 
controlled. The first equation is linear time-invariant and can 
be stabilizable by adding to(8) the feedback component  
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The second equation is the zero dynamics. Proposition 1 and 
inequality (12) show that it may be tangentially unstable.  
Proof. Equation (13) follows by applying (8) to (1). 
Stabilization of the first equation in (13) is elementary. □ 

The overall stabilization has been tackled in [20] by 
controlling a suitable combination of the tank levels, which 
does not coincide with the level of the output tanks as 
requested by the problem formulation. Here we restrict to the 
stable zero-dynamics case, i.e., γa+γb>1, since we directly 
control only the output tank levels through (8) and (15). In 
this case the input tank levels xk, k=3,4 may fluctuate under 
the action of external disturbances, whereas the output tank 
levels xk, k=1, 2 are demanded to meet the requirements of the 
problem formulation. In the case γa+γb≤1, the input tank 
level may diverge reaching the lower and upper limits in (1), 
which in turn may demand unfeasible pump flows. 

III. EMBEDDED MODEL, NOISE ESTIMATOR, CONTROL LAW  

Each measured level yk, k=1,…,4 is associated with a third 
order unstable and not stabilizable state equation: 
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Actuator and sensor delays are neglected. The time unit T 
must be designed. The overall disturbance dk affecting the 
level xk is the combination of the partly known cross-coupling 
hk(x) (less parametric uncertainty), of the unknown xdk + wx: 

        k dk x kd i x i w i h x    (17) 

The former term in (17) is the output of a second order 
random drift capable of encompassing a large class of 
stochastic and deterministic signals; the second term is an 
arbitrary zero-mean signal class (in the statistical framework, 
a DT white nose). Relations between (16) and (1) are  

 

      
      
       

1 1, 1 3, 3

2 2, 1 4, 3

3 3, 1 4 4, 1,  

nom nom

nom nom

nom nom

h x T p x p x

h x T p x p x

h x p x T h x p x T

  

  

   

  (18) 

and 
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The subscript nom accounts for nominal parameters.  
Since each equation (16) possesses its own measured 

output, the noise vector wk can be estimated by a static 
feedback (noise estimator) as in standard state observers. The 
feedback is driven by the model error emk in (16): 

      ,
T

k k mk k xk dk skw i L e i L l l l   (20) 

The pair (16) and (20) is a closed-loop state predictor. The 
gain matrix Lk in (20) is obtained by fixing the state predictor 
spectrum Λsk={1-γsk1, 1-γsk2, 1-γsk3}. The parameter γskj is a 
DT complementary eigenvalue and approximates the Fourier 
frequency fskj (Hz) as follows 

   1
2skj skjf T     (21) 

The approximation tends to be exact as soon as γskj→0. The 
relationship between Lk and sk  is simple and in the case of 
equal eigenvalues, γskj = γsk, j=1, 2, 3, holds. 
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By disposing of the state prediction xk (i+1) (controllable 
state) and xdk (i+1) (disturbance state entering (17)), the DT 
control law repeating (8) and (15) is immediate. The 
command uk(i), k=1, 2, which is pre-computed during the step 
i-1 holds: 
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IV. GAIN TUNING 

Consider a single controlled tank level xk, k=1, 2. It has 
been proven in [26] that the tracking error ek, ref  in  (7) is the 
output of the following error equation: 
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where dk is the total disturbance in (17) but shifted to the 
output (to this end it is integrated), and emk  is the model error 
in (16). In terms of transfer functions, (24) can be shown [24] 
to convert into 

          ,ref k k mk k yke z V z e z S z d z     (25) 

where Sk, and Vk are the sensitivity and the complementary 
sensitivity, respectively.  

Robust stability versus neglected dynamics is guaranteed 
by the high-frequency decay of | Vk (jf)|, whereas the 
performance in (7) is guaranteed by the low-frequency 
asymptote of |Sk (jf)|. An asymptotic design procedure has 
been proved and shown in [26]. The following low high 
frequency asymptotes is obtained from (22): 
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(26) 

In (26) fsk plays the role of the state predictor BW, whereas 
fFk>fsk plays the role that of the state feedback BW. It is 
immediate to perceive their design roles. At first sight the 
time unit T  does not enter (26), but the largest BW, in 
practice fFk must be less than the Nyquist frequency 
fmax=0.5/T, i.e. , 

 max / 5Fkf f  (27) 

Now we assumed that in (7): 

 ,max200 ,  3s k ks e         (28) 

where ρk has been defined in (6). The settling time s  is of the 
same order of the nominal discharge time constant: 

 ,2
150 ~ 250k refk

k
k

xa
s

S g
    (29)  

The settling time s  is imposed by the state predictor BW fsk, 
which implies the preliminary design scale: 

 

max

10
0.01 Hz, 5 0.05 Hz

2

10 0.5 Hz

sk Fk sk
s

Fk

f f f

f f


   

 
 (30) 

A further inequality comes from the second requirement in  
(28) in presence of unknown disturbances. S0k in  (26) being 
third order, may reduce third order drifts on the output to a 
residual white noise. For instance a third-order drift in dvk 
having spectral density (PSD for short hereinafter): 

    3

0 /dy d dS f S f f   (31) 

is reduced to a residual white noise with spectral density: 

        3

0 /w ok dy d d skS f S jf S f S f f    (32) 

Then assuming flat spectral density in  (32), yields in the 
following design inequality: 

  1/3

0 / 2 /sk d d kf f S T   (33) 

Similar inequalities can be obtained from the parametric 
uncertainty.  

The design in (25) must be verified against the neglected 
dynamics. Assuming a total delay τy+τu=nT, the effect on  (25) 
is that of a further loop which is expressed by the left hand 
side term as follows: 

 
     

         
,1 1 n

k ref k

k mk k k k

V z z e z

V z e z S z M z d z

  

 
 (34) 

Closed stability is guaranteed (small gain theorem) if  
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   
max

2max 1 1j fnT
kf f V jf e  

      (35) 

where η-1 is the gain margin. Since the peak value of the last 
factor expressing the delay model error is equal to 2 and is 
achieved at f ≌ 0.1 fmax/n, the following inequality holds: 

 max / 0.05 Hz, 3,  0.3Fkf f n n      (36) 

V.  SIMULATED RESULTS 

The simulated parameters are listed in Table I.  

TABLE I.  SIMULATED PARAMETERS  

Parameter Value Unit Description and equation 
Snom 0.06 m2 Nominal cross-section area 

(2) 
ak 0.9~1.5 cm2 Discharge constant (2) 
xk,max 1.36 m Maximum tank level (1) 
γa, γb > 0.5  Valve aperture fraction (3) 
x0k   0.66  m Initial level (1) 

qa,max, qb,max 1.1 dm3/s Maximum pump flow (1) 

ρa, ρb 1.0 cm3/s Command quantization (5) 
ρk 1.3 mm Output quantization (6) 

T  1 s Time unit (17) 

fmax 0.5 Hz Nyquist frequency (28) 

nT  2 s Total delay (32) 

fd 0.5～1 mHz Disturbance cutoff 
frequency (29) 

Sd0 ≈0.1 m/ Hz  
Low-frequency PSD (29) 

δπj  <0.1  Fractional uncertainty (4) 
 

The control parameters are listed in Table II and are 
derived from the design outlined in Section IV. Manual 
optimization has been done in order to reduce the overshoot 
of the sensitivity S(z) defined in  (25) 

TABLE II.  CONTROL PARAMETERS AND PERFORMANCE 

Parameter Value Unit Description and 
equation 

Λsk, fskj 0.008～0.016 Hz State predictor BW 
(19), (28) 

fFk 0.08 Hz Feedback BW (28) 
τs <200 s Settling time (26) 
ek, max <1 mm Tracking error (26) 

 
Fig. 2. Sensitivity, complementary sensitivity and 

disturbance spectral density. 

The magnitude of the sensitivity S, of the complementary 
sensitivity V and of the integrated disturbance spectral density 
Sdv (shifted to the output, m/ Hz ) are shown in Fig. 2. The 

residual flat spectral density Sw in (32) can be estimated by the 
product at the intersection in Fig. 2. The corresponding 
residual standard deviation looks in agreement with 
performance (7) and (28) as reported in row 4 of Table II.  

Fig. 3 shows the simulated tank levels: 1x  and 2x   (output 
tanks) are under control and they repeat the reference levels.  

3x  and 4x  are out of control and they widely fluctuate. Their 
fluctuation versus the output tank tracking error, which is 
shown in Fig. 4 and Fig. 5, prove the design effectiveness.  

 
Fig. 3. Regulated and not regulated tank levels. 

Fig. 4 and the enlargement in Fig. 5 show the tracking 
errors of the output tanks defined in (7). The enlargement 
shows that requirements in (28) are met. Specifically, Fig. 5 
shows the limit cycle imposed by the quantization errors and 
the neglected dynamics (delays neglected by the EM). The 
magnitude is less than the output quantization ρk.  

 
Fig. 4. Tracking error of the output tank level. 

 
Fig. 5. Output tank tracking error (enlargement). 

 
Fig. 6. Pump commanded flow.  

Fig. 6 shows the pump commanded flows. They saturate 
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during the sharp transient imposed by a stepwise reference 
signal. Saturation causes no detriment since the same 
command is dispatched to the plant and to the EM. To avoid 
saturation, reference profile should be smoothed. 

Finally, Fig. 7 (analogous of Fig. 4) shows that a control 
strategy (8) and (15), restricted to the sole output tanks can 
not accommodate zero-dynamics instability as proved in 
Section II.B. Under the same conditions of the stable case, but 
with γa + γb <1, Fig. 7 shows that the reference level cannot be 
always tracked with required accuracy.  

 
Fig. 7. Tracking error of the output tank in the unstable zero 

dynamics case. 

VI. CONCLUSION 

The application of EMC approach is investigated in the 
four- tank benchmark. The zero-dynamics is assumed to be 
stable in the control design, which allows a decoupled control 
of the sole output tanks. Under such a restricted condition, the 
proposed control approach is directly designed in discrete 
time and centered on a simple embedded model of each tank. 
The embedded model includes a second-order stochastic 
dynamics to predict and reject the unknown disturbances 
including parametric uncertainty. The effectiveness of the 
proposed approach and the achievement of the required 
performance are validated by the extensive simulation results. 
A control strategy capable of accommodating zero-dynamics 
instability is under study.  
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