16,426 research outputs found

    Design and Fabrication of a Self-Calibrating Germanium Photodiode for Radiometric Applications

    Get PDF
    This work is concerned with the design and fabrication of an absolute radiometric detector operated over the 0.7 to 1.5 Ī¼m wavelength range. This application requires a semiconductor photodiode with high internal quantum efficiency and long term stability. Of many possible materials, germanium is chosen because high quality material is available, the fabrication processes are relatively straight forward, and a high quantum efficiency is achievable. The fabrication procedures for a germanium cell were developed. Two types of germanium photodiodes were fabricated and tested. In both photodiodes, a channel stop has been employed to reduce the lateral current due to surface inversion. Ion implantation is used to form the n+-p junction, the channel stop and the back surface field. To reduce the surface recombination, CVD Si02 was deposited for surface passivation. A Ti/Pd/Ag metal layer was then sputtered to make the interconnections. With this process, dark current as low as 0.35 mA/cm2 has been observed on a 2 Ī© -cm substrate. The n+pp+ photodiodes had a considerably low quantum efficiency than the induced junction photodiodes. It is shown by computer simulation that the internal quantum efficiency, Ī·, of an n+pp+ diode is strongly affected by the carrier lifetime, r, in the emitter and the surface recombination velocity, S, at the SiO2-Ge surface. The high quantum efficiency in the induced junction diodes can be attributed to the absence of implantation induced damage in the emitter, and an electric field near the surface, induced by the fixed charges of the SiO2 layer. With the induced junction structure, we have observed an internal quantum efficiency of 98.8% at 0.7 Ī¼m and of 97% at 1.5 Ī¼m

    Ontology-based Fuzzy Markup Language Agent for Student and Robot Co-Learning

    Full text link
    An intelligent robot agent based on domain ontology, machine learning mechanism, and Fuzzy Markup Language (FML) for students and robot co-learning is presented in this paper. The machine-human co-learning model is established to help various students learn the mathematical concepts based on their learning ability and performance. Meanwhile, the robot acts as a teacher's assistant to co-learn with children in the class. The FML-based knowledge base and rule base are embedded in the robot so that the teachers can get feedback from the robot on whether students make progress or not. Next, we inferred students' learning performance based on learning content's difficulty and students' ability, concentration level, as well as teamwork sprit in the class. Experimental results show that learning with the robot is helpful for disadvantaged and below-basic children. Moreover, the accuracy of the intelligent FML-based agent for student learning is increased after machine learning mechanism.Comment: This paper is submitted to IEEE WCCI 2018 Conference for revie

    A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy

    Get PDF
    A set of unified constitutive equations is presented that predict the asymmetric tension and compression creep behaviour and recently observed double primary creep of pre-stretched/naturally aged aluminium-cooper-lithium alloy AA2050-T34. The evolution of the primary micro- and macro-variables related to the precipitation hardening and creep deformation of the alloy during creep age forming (CAF) are analysed and modelled. Equations for the yield strength evolution of the alloy, including an initial reversion and subsequent strengthening, are proposed based on a theory of concurrent dissolution, re-nucleation and growth of precipitates during artificial ageing. We present new observations of so-called double primary creep during the CAF process. This phenomenon is then predicted by introducing effects of interacting microstructures, including evolving precipitates, diffusing solutes and dislocations, into the sinh-law creep model. In addition, concepts of threshold creep stress Ļƒth and a microstructure-dependant creep variable H, which behave differently under different external stress directions, are proposed and incorporated into the creep model. This enables prediction of the asymmetric tension and compression creep-ageing behaviour of the alloy. Quantitative transmission electron microscopy (TEM) and related small-angle X-ray scattering (SAXS) analysis have been carried out for selected creep-aged samples to assist the development and calibration of the constitutive model. A good agreement has been achieved between the experimental results and the model. The model has the potential to be applied to creep age forming of other heat-treatable aluminium alloys

    Improving visual functions in adult amblyopia with combined perceptual training and transcranial random noise stimulation (tRNS): a pilot study

    Get PDF
    Amblyopia is a visual disorder due to an abnormal pattern of functional connectivity of the visual cortex and characterized by several visual deficits of spatial vision including impairments of visual acuity (VA) and of the contrast sensitivity function (CSF). Despite being a developmental disorder caused by reduced visual stimulation during early life (critical period), several studies have shown that extensive visual perceptual training can improve VA and CSF in people with amblyopia even in adulthood. With the present study we assessed whether a much shorter perceptual training regime, in association with high-frequency transcranial electrical stimulation (hf-tRNS), was able to improve visual functions in a group of adult participants with amblyopia. Results show that, in comparison with previous studies where a large number sessions with a similar training regime were used (Polat et al., 2004), here just eight sessions of training in contrast detection under lateral masking conditions combined with hf-tRNS, were able to substantially improve VA and CSF in adults with amblyopia

    Field-Free Switching in Symmetry Breaking Multilayers: The Critical Role of Interlayer Chiral Exchange

    Full text link
    It is crucial to realize field-free, deterministic, current-induced switching in spin-orbit torque magnetic random-access memory (SOT-MRAM) with perpendicular magnetic anisotropy (PMA). A tentative solution has emerged recently, which employs the interlayer chiral exchange coupling or the interlayer Dzyaloshinskii-Moriya interaction (i-DMI) to achieve symmetry breaking. We hereby investigate the interlayer DMI in a Pt/Co multilayer system with orthogonally magnetized layers, using repeatedly stacked [Pt/Co]n structure with PMA, and a thick Co layer with in-plane magnetic anisotropy (IMA). We clarify the origin and the direction of such symmetry breaking with relation to the i-DMI effective field, and show a decreasing trend of the said effective field magnitude to the stacking number (n). By comparing the current-induced field-free switching behavior for both PMA and IMA layers, we confirm the dominating role of i-DMI in such field-free switching, excluding other possible mechanisms such as tilted-anisotropy and unconventional spin currents that may have arisen from the symmetry breaking

    BIOMECHANICAL ANALYSIS DURING COUNTERMOVEMENT JUMP IN CHILDREN AND ADULTS

    Get PDF
    This study was to examine the biomechanical characteristics of children and adults during countermovement jump. Seven children and seven adult males were recruited to the study. A Peak high-speed camera (120Hz) synchronized with a force plate (600Hz) were used to record vertical jumping action. The kinetic parameters were calculated by using inverse dynamic method. Results showed that the children had both immature joint function prior to propulsion and inadequate knee and ankle joints function during propulsion. It is concluded that a lack of form in jumping strategy was performed during vertical jumpings in the children's group in terms of the kinetic methods was performed. This information may be used in following studies about countermovement jump, avoiding some important information needed only by kinematic analysis, it will be more complete to apply kinetic analysis for children movement researches
    • ā€¦
    corecore