55 research outputs found

    Dynamic Coarse-to-Fine Learning for Oriented Tiny Object Detection

    Full text link
    Detecting arbitrarily oriented tiny objects poses intense challenges to existing detectors, especially for label assignment. Despite the exploration of adaptive label assignment in recent oriented object detectors, the extreme geometry shape and limited feature of oriented tiny objects still induce severe mismatch and imbalance issues. Specifically, the position prior, positive sample feature, and instance are mismatched, and the learning of extreme-shaped objects is biased and unbalanced due to little proper feature supervision. To tackle these issues, we propose a dynamic prior along with the coarse-to-fine assigner, dubbed DCFL. For one thing, we model the prior, label assignment, and object representation all in a dynamic manner to alleviate the mismatch issue. For another, we leverage the coarse prior matching and finer posterior constraint to dynamically assign labels, providing appropriate and relatively balanced supervision for diverse instances. Extensive experiments on six datasets show substantial improvements to the baseline. Notably, we obtain the state-of-the-art performance for one-stage detectors on the DOTA-v1.5, DOTA-v2.0, and DIOR-R datasets under single-scale training and testing. Codes are available at https://github.com/Chasel-Tsui/mmrotate-dcfl.Comment: Accepted by CVPR202

    Destabilization of Fatty Acid Synthase by Acetylation Inhibits De Novo Lipogenesis and Tumor Cell Growth

    Get PDF
    Fatty acid synthase (FASN) is the terminal enzyme in de novo lipogenesis and plays a key role in cell proliferation. Pharmacological inhibitors of FASN are being evaluated in clinical trials for treatment of cancer, obesity and other diseases. Here we report a previously unknown mechanism of FASN regulation involving its acetylation by KAT8 and its deacetylation by HDAC3. FASN acetylation promoted its degradation via the ubiquitin-proteasome pathway. FASN acetylation enhanced its association with the E3 ubiquitin-ligase TRIM21. Acetylation destabilized FASN and resulted in decreased de novo lipogenesis and tumor cell growth. FASN acetylation was frequently reduced in human hepatocellular carcinoma samples, which correlated with increased HDAC3 expression and FASN protein levels. Our results suggest opportunities to target FASN acetylation as an anticancer strategy

    Genome sequencing and comparative genomic analysis of highly and weakly aggressive strains of Sclerotium rolfsii, the causal agent of peanut stem rot

    Get PDF
    Background: Stem rot caused by Sclerotium rolfsii is a very important soil-borne disease of peanut. S. rolfsii is a necrotrophic plant pathogenic fungus with an extensive host range and worldwide distribution. It can infect peanut stems, roots, pegs and pods, leading to varied yield losses. S. rolfsii strains GP3 and ZY collected from peanut in different provinces of China exhibited a significant difference in aggressiveness on peanut plants by artificial inoculation test. In this study, de-novo genome sequencing of these two distinct strains was performed aiming to reveal the genomic basis of difference in aggressiveness. Results: Scleotium rolfsii strains GP3 and ZY, with weak and high aggressiveness on peanut plants, exhibited similar growth rate and oxalic acid production in laboratory. The genomes of S. rolfsii strains GP3 and ZY were sequenced by Pacbio long read technology and exhibited 70.51 Mb and 70.61 Mb, with contigs of 27 and 23, and encoded 17, 097 and 16,743 gene models, respectively. Comparative genomic analysis revealed that the pathogenicity-related gene repertoires, which might be associated with aggressiveness, differed between GP3 and ZY. There were 58 and 45 unique pathogen-host interaction (PHI) genes in GP3 and ZY, respectively. The ZY strain had more carbohydrateactive enzymes (CAZymes) in its secretome than GP3, especially in the glycoside hydrolase family (GH), the carbohydrate esterase family (CBM), and the polysaccharide lyase family (PL). GP3 and ZY also had different effector candidates and putative secondary metabolite synthetic gene clusters. These results indicated that differences in PHI, secreted CAZymes, effectors and secondary metabolites may play important roles in aggressive difference between these two strains. Conclusions: The data provided a further understanding of the S. rolfsii genome. Genomic comparison provided clues to the difference in aggressiveness of S. rolfsii strains

    Dissection of the Genetic Basis of Resistance to Stem Rot in Cultivated Peanuts (Arachis hypogaea L.) through Genome-Wide Association Study

    Get PDF
    Peanut (Arachis hypogaea) is an important oilseed and cash crop worldwide, contributing an important source of edible oil and protein for human nutrition. However, the incidence of stem rot disease caused by Athelia rolfsii poses a major challenge to peanut cultivation, resulting in significant yield losses. In this study, a panel of 202 peanut accessions was evaluated for their resistance to stem rot by inoculating plants in the field with A. rolfsii-infested oat grains in three environments. The mean disease index value of each environment for accessions in subsp. fasitigiate and subsp. hypogaea showed no significant difference. Accessions from southern China displayed the lowest disease index value compared to those from other ecological regions. We used whole-genome resequencing to analyze the genotypes of the accessions and to identify significant SNPs associated with stem rot resistance through genome-wide association study (GWAS). A total of 121 significant SNPs associated with stem rot resistance in peanut were identified, with phenotypic variation explained (PVE) ranging from 12.23% to 15.51%. A total of 27 candidate genes within 100 kb upstream and downstream of 23 significant SNPs were annotated, which have functions related to recognition, signal transduction, and defense response. These significant SNPs and candidate genes provide valuable information for further validation and molecular breeding to improve stem rot resistance in peanut

    Angiotensin-Converting Enzyme-2 Overexpression Improves Left Ventricular Remodeling and Function in a Rat Model of Diabetic Cardiomyopathy

    Get PDF
    ObjectivesThe aim of this study was to test the hypothesis that angiotensin (Ang)-converting enzyme-2 (ACE2) overexpression may inhibit myocardial collagen accumulation and improve left ventricular (LV) remodeling and function in diabetic cardiomyopathy.BackgroundHyperglycemia activates the renin-Ang system, which promotes the accumulation of extracellular matrix and progression of cardiac remodeling and dysfunction.MethodsNinety male Wistar rats were divided randomly into treatment (n = 80) and control (n = 10) groups. Diabetes was induced in the treatment group by a single intraperitoneal injection of streptozotocin. Twelve weeks after streptozotocin injection, rats in the treatment group were further divided into adenovirus-ACE2, adenovirus–enhanced green fluorescent protein, losartan, and mock groups (n = 20 each). LV volume; LV systolic and diastolic function; extent of myocardial fibrosis; protein expression levels of ACE2, Ang-converting enzyme, and Ang-(1-7); and matrix metalloproteinase–2 activity were evaluated. Cardiac myocyte and fibroblast culture was performed to assess Ang-II and collagen protein expression before and after ACE2 gene transfection.ResultsFour weeks after ACE2 gene transfer, the adenovirus-ACE2 group showed increased ACE2 expression, matrix metalloproteinase–2 activity, and LV ejection fractions and decreased LV volumes, myocardial fibrosis, and ACE, Ang-II, and collagen expression in comparison with the adenovirus–enhanced green fluorescent protein and control groups. ACE2 was superior to losartan in improving LV remodeling and function and reducing collagen expression. The putative mechanisms may involve a shift in balance toward an inhibited fibroblast-myocyte cross-talk for collagen and transforming growth factor–beta production and enhanced collagen degradation by matrix metalloproteinase–2.ConclusionsACE2 inhibits myocardial collagen accumulation and improves LV remodeling and function in a rat model of diabetic cardiomyopathy. Thus, ACE2 provides a promising approach to the treatment of patients with diabetic cardiomyopathy
    corecore