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Abstract

Fatty acid synthase (FASN) is the terminal enzyme in de novo lipogenesis and plays a key role in 

cell proliferation. Pharmacological inhibitors of FASN are being evaluated in clinical trials for 

treatment of cancer, obesity and other diseases. Here we report a previously unknown mechanism 

of FASN regulation involving its acetylation by KAT8 and its deacetylation by HDAC3. FASN 

acetylation promoted its degradation via the ubiquitin-proteasome pathway. FASN acetylation 

enhanced its association with the E3 ubiquitin-ligase TRIM21. Acetylation destabilized FASN and 

resulted in decreased de novo lipogenesis and tumor cell growth. FASN acetylation was frequently 

reduced in human hepatocellular carcinoma samples, which correlated with increased HDAC3 
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expression and FASN protein levels. Our results suggest opportunities to target FASN acetylation 

as an anticancer strategy.
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Introduction

In de novo lipogenesis, fatty acid synthase (FASN) catalyzes the synthesis of palmitate from 

acetyl-CoA and malonyl-CoA, in the presence of NADPH as a reducing equivalent. FASN 

expression is commonly low in normal and non-proliferating cells, which typically import 

lipids from the extracellular milieu. In contrast, actively proliferating cells, especially tumor 

cells, have increased demands for lipids, which is highly dependent on de novo synthesis. 

Accordingly, FASN is frequently up-regulated in many types of tumors, such as breast, 

prostate, liver, colon, and ovarian cancers (1–6). Moreover, increased FASN expression is 

linked to chemoresistance, tumor metastasis, and poorer prognosis in numerous types of 

cancers (7–10). These observations suggest that FASN plays an important role in affecting 

tumor metabolism and FASN-catalyzed de novo lipid synthesis could be a rational 

therapeutic target for cancer. Extensive efforts have been invested into the development of 

FASN inhibitors for treating cancer, as well as non-proliferative disease such as obesity. For 

instance, Cerulenin and its semi-synthetic derivate C75, both of which inhibit the 

condensation reaction of fatty acid synthesis, can induce apoptosis in breast cancer cells and 

delay tumor progression in a xenograft model of ovarian cancer (11, 12); Orlistat, which 

inhibits the release of palmitate (13), can induce apoptosis, inhibit cell proliferation, and 

suppress tumor growth in prostate cancer cells (14). However, many current FASN inhibitors 

exhibit strong toxicity in preclinical and clinical trials (15), underscoring the importance of 

identifying new strategies to target FASN.

Regulation of FASN has been studied extensively and its regulation at the level of 

transcription has been the primary focus to date. Human FASN gene expression is controlled 

by multiple transcription factors, including upstream stimulatory factor (USF), sterol 

regulatory element binding protein-1 (SREBP-1), and carbohydrate responsive element–

binding protein (ChREBP) (16–18). It has been reported that hypoxia, which is a common 

microenvironment inside solid tumors, induces SREBP-1 expression and increases FASN 
transcription in cultured human breast cancer cells (19). Insulin, an important metabolism 

and energy regulator, triggers FASN mRNA expression via USF and SREBP-1 recruitment 

to FASN promoter in Drosophila SL2 cells and mouse 3T3L1 adipocytes (20–22). 

Moreover, FASN mRNA expression is up-regulated by epidermal growth factor (EGF) in 

cultured human prostate cancer cells (23) and in the liver of rats fed a carbohydrate/protein 

diet (24). In addition, FASN mRNA expression can also be down-regulated in mouse livers 

by glucagon, an antagonistic hormone of insulin (25). Furthermore, polyunsaturated fatty 

acids and leptin can suppress FASN mRNA expression via impairing the recruitment of 

SREBP-1 and other nuclear factors to FASN promoter in cultured breast cancer cells (26) 
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and in rat hepatocytes and adipocytes (27). In contrast to the transcriptional regulation of 

FASN, much less is known about its post-translational regulation.

As an evolutionarily conserved protein post-translational modification, acetylation regulates 

a wide range of biological processes-gene transcription and metabolism, in particular (28, 

29). Several acetylome studies have identified more than 15,000 acetylation sites on >4500 

proteins, including FASN (29–32). In this study, we investigate the regulatory mechanism 

and functional consequence of FASN acetylation.

Materials and Methods

In vivo ubiquitylation assay

In vivo ubiquitylation assay was performed as described previously (33, 34). Briefly, cells 

were harvested at 36 hours after transfection and then lysed in 1% SDS (0.5 mM Tris-HCl, 

pH 7.5, 0.5 mM EDTA, 1.0 mM DTT) with protease and phosphatase inhibitor cocktail, and 

then immunoprecipitated in 0.1% SDS by dilution. Analyses of ubiquitylation were 

determined by Western blot.

Cell culture

HEK293T, HCT116 and ZR-75-30, which have been used in our present study, were 

obtained from the American Type Culture Collection (ATCC) in 2015, where they were 

characterized by Mycoplasma detection, DNA fingerprinting, isozyme detection, and cell 

vitality detection. HEK293T, HCT116, and ZR-75-30 cell lines were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM) (Invitrogen), McCoy’s 5A Medium (Sigma), and RPMI 

1640 medium (Sigma), respectively, supplemented with 10% fetal bovine serum (Gibco) in 

the presence of 100 units/ml penicillin and 100 μg/ml streptomycin at 37°C with 5% CO2. 

And Cells were immediately stored in liquid nitrogen till use. A new frozen vial of the same 

batch of cells was re-started every 2–3 months.

FASN enzyme activity assay

FASN enzyme activity was determined as described previously (4). Briefly, the reaction 

mixture consisted of 150 μg particle-free supernatant, 200 mM potassium phosphate buffer 

(pH 6.6), 1 mM dithiothreitol, 1 mM EDTA, 0.24 mM NADPH and 30 μM acetyl-CoA 

(Sigma) in a total volume of 300 μL. Reactions were initiated by adding 50 μM of malonyl-

CoA (Sigma) and analyzed at 25°C. Activities were measured spectrophotometrically by 

recording oxidation of NADPH at A340nm (HITACH F-4600 fluorescence 

spectrophotometer). Rates were corrected for the background rate of NADPH oxidation in 

the presence of acetyl-CoA. FASN activity was calculated in nM NADPH oxidized min−1mg 

protein−1.

Measurement of cellular lipid content

HCT116 cells were seeded on a microscope cover glass in a 35 mm culture plate at a density 

of 1×106 cells per well. Cells were washed with PBS, and then subjected to a hyperspectral 

SRS microscope to measure biochemical components. Detailed setup of the SRS microscope 

has been described previously (35), except that the 2.3 MHz acousto-optic was replaced by a 
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20 MHz electro-optic modulator. Images (512 × 512 pixels) were sequentially acquired via 

the layer by layer scanning model (step size 1 μm) under frequencies of 2850 cm−1 (lipid) 

and 2928 cm−1 (protein), and then reconstructed into two 3D images. The intensity of pixels 

in 3D images was regarded as the quantity of lipids or proteins and added together after the 

background was eliminated. Lipid contents were normalized to protein contents in each 

image. All data were processed using Matlab software.

Cell proliferation analysis

HCT116 or ZR-75-30 stable cells were seeded in 6-well plates at a density of 1×105 cells 

per well. Culture medium was refreshed every day. RGFP966 (10 μM) was added into the 

culture medium at day 1, and refreshed every day. Cell numbers were counted every day 

over a period of 5 days.

Human Hepatocellular Carcinoma (HCC) cancer samples

Following physician-obtained informed consent from patients, HCC cancer samples were 

collected by the Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, 

Fudan University. The procedures related to human subjects were approved by the Ethics 

Committee of the Institutes of Biomedical Sciences (IBS), Fudan University.

Statistics

Statistical analyses were performed with a two-tailed unpaired Student’s t-test, except when 

indicated. All data shown represent the results obtained from triplicated independent 

experiments (mean ± S.D.). The values of P < 0.05 were considered statistically significant.

Results

Acetylation promotes FASN protein degradation

Multiple acetylated lysine residues were identified in FASN by mass spectrometry (30–32). 

Western blotting with a pan anti-acetyl lysine antibody demonstrated that Flag-tagged FASN 

was indeed acetylated, and its acetylation increased by 2.2-fold in HEK293T cells after 

combined treatment with nicotinamide (NAM), an inhibitor of the SIRT family deacetylases 

(36), and trichostatin A (TSA), an inhibitor of histone deacetylase (HDAC) I and II (37) 

(Fig. 1A). When FASN-overexpressing cells were separately treated with either NAM or 

TSA, the acetylation level of FASN-Flag was increased by TSA (2.4-fold), but not by NAM 

(1.1-fold), suggesting that FASN is deacetylated by a HDAC family deacetylase. In 

agreement, acetylation of endogenous FASN increased by >2-fold after TSA treatment in 

three different cell types, HEK293T, HCT116, and ZR-75-30 cells (Figs. 1B and 1C). 

Notably, TSA-dependent increase in FASN acetylation was accompanied by decreased 

FASN protein levels (Figs. 1D and 1E). FASN mRNA expression was, however, either 

unaffected (HEK293T and HCT116 cells) or even up-regulated (ZR-75-30 cells) by TSA 

treatment (Fig. 1F). Together, these results suggest that acetylation may promote FASN 

protein degradation.
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Acetylation promotes FASN degradation via the ubiquitin-proteasome pathway

Inhibition of protein synthesis with cycloheximide (CHX) demonstrated that FASN is a 

rather stable protein in HCT116 cells with an approximate half-life of 11 hours (Fig. 2A). 

FASN half-life was reduced to ~7 hours by TSA treatment in HCT116 cells (Fig. 2A). 

Likewise, FASN half-life was also shortened by 4 hours after TSA treatment in HEK293T 

cells (Fig. S1A), suggesting that acetylation destabilizes FASN protein.

In eukaryotes, there are two major pathways by which cellular proteins are degraded—the 

ubiquitin-proteasome pathway and the autophagy-lysosome pathway. Treatment with 

Leupeptin, an inhibitor of lysosomal degradation, did not increase FASN protein in 

HEK293T cells (Fig. S1B). In contrast, treatment with the proteasome inhibitor MG132 

increased FASN protein in HEK293T cells (Fig. 2B). Importantly, while inhibition of HDAC 

by TSA decreased FASN protein by 40% (Fig. 2C, comparing lane 1 to lane 2), this decrease 

was restored by the treatment of cells with MG132, an inhibitor of 26S proteasome 

(comparing lane 2 to lane 3). These results indicate that the acetylation-induced FASN 

destabilization is mediated by the ubiquitin-proteasome system. Supporting this notion, we 

found markedly increased levels of polyubiquitylated FASN-Flag in HEK293T cells 

following TSA treatment, but not NAM treatment (Figs. S1C and 2D). Moreover, FASN 

polyubiquitylation is further increased by TSA treatment in combination with MG132 in 

these cells (Fig. 2E). The TSA-dependent increase in endogenous FASN acetylation and 

polyubiquitylation, and the accompanying reduction in FASN protein level in HEK293T 

cells (Fig. 2F), further support the idea that acetylation promotes FASN polyubiquitylation 

and protein destabilization.

Additionally, we also compared the acetylation levels of ubiquitylated and non-ubiquitylated 

FASN. HEK293T cells ectopically expressing FASN-Flag and HA-Ub were treated with 

TSA for 16 hours and following treatment, cell lysates were subjected to three sequential 

immunoprecipitations; first with Flag beads to precipitate total FASN proteins, then with HA 

antibody to enrich ubiquitylated FASN, and finally with FASN antibody to precipitate the 

non-ubiquitylated FASN from the supernatant depleted by the HA antibody (Fig. S1D). 

Compared with non-ubiquitylated FASN, we found that ubiquitylated FASN was more 

heavily acetylated (Fig. S1D), further confirming the role of acetylation in promoting FASN 

polyubiquitylation.

KAT8 is a major acetyltransferase of FASN

The acetylation state of a protein is controlled by lysine acetyltransferases (KATs) and 

deacetylases (KDACs), enzymes that catalyze the addition and removal of an acetyl group 

from a lysine residue, respectively. To identify potential KAT(s) which are responsible for 

FASN acetylation, we ectopically expressed a panel of 12 different human KAT proteins and 

determined their interaction with endogenous FASN in HEK293T cells. Among the KATs 

tested, only KAT8 was found to interact with endogenous FASN (Figs. 3A and S2). 

Reciprocal immunoprecipitation confirmed the protein interaction between endogenous 

FASN and Myc-KAT8 (Fig. 3B). Overexpression of Myc-KAT8 increased the acetylation 

level of endogenous FASN by 2.2-fold (Fig. 3C). In contrast, knockdown of KAT8 
decreased endogenous FASN acetylation by as much as 55% (Fig. 3D). Consistent with our 
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earlier observation that acetylation promotes FASN protein degradation (Figs. 1D and 1E), 

we found that overexpression of Myc-KAT8 decreased the steady state level of endogenous 

FASN protein by 59% without a significant change in FASN mRNA expression in 

HEK293T cells (Fig. 3E). Conversely, KAT8 knockdown increased endogenous FASN 

protein level by 1.45-fold, again without significantly affecting FASN mRNA level (Fig. 

3F). These results collectively indicate that KAT8 is a major acetyltransferase of FASN.

HDAC3 is a major deacetylase of FASN

Our earlier observation that TSA, but not NAM, increases FASN acetylation (Fig. 1A) led us 

to search for the HDAC family enzyme(s) that is involved in FASN deacetylation. We 

transiently expressed 9 of 11 human HDAC proteins in combination with FASN-Flag and 

determined their interaction (Figs. 4A and S3A). Among the tested HDACs, only HA-

HDAC3 was found to interact with FASN-Flag. Consistent with this result, the protein 

interaction between endogenous HDAC3 and FASN was readily detected in HEK293T cells 

(Fig. 4B). Likewise, overexpression of HA-HDAC3 decreased the acetylation level of 

endogenous FASN by 35% in HEK293T cells, while the expression of a catalytic inactive 

mutant HDAC3Y298H (38) failed to reduce FASN acetylation (Fig. 4C). Conversely, HDAC3 
knockdown increased the acetylation level of endogenous FASN by >1.5-fold in HEK293T 

cells (Fig. S3B). In HEK293T cells with stable HDAC3 knockdown, the half-life of 

endogenous FASN protein was shortened by 4 hours (Fig. S3C). Surprisingly, the steady 

state level of FASN protein was largely unchanged (Figs. S3B). We found that FASN mRNA 

expression was increased by as much as 3-fold in HEK293T cells depleted for HDAC3 (Fig. 

S3B), which is in line with a previous report that deletion of HDAC3 leads to up-regulated 

FASN mRNA expression in mouse liver cells (39).

To provide direct evidence that the catalytic activity of HDAC3 regulates FASN protein 

stability, we treated cells with RGFP966, a selective inhibitor for HDAC3 (40). RGFP966 

selectively inhibits HDAC3 with IC50 of 0.08 μM, but it is much weaker toward other 

HDACs such as HDAC1 and HDAC2 whose activity was not significantly affected by 

RGFP966 concentration of up to 15 μM (40). Our data demonstrated that RGFP966 

increased the polyubiquitylation levels of both ectopically expressed and endogenous FASN 

proteins in HEK293T cells in a dose-dependent manner, with a significant increase in FASN 

polyubiquitylation in cells treated with 10 μM RGFP966 (Figs. 4D and 4E). Accordingly, 

RGFP966 treatment decreased endogenous FASN protein levels in a dose-dependent manner 

with a notable reduction (49%) at 10 μM RGFP966, but without modulating FASN mRNA 

expression in HEK293T cells (Fig. 4F). The effects of RGFP966 on stimulating endogenous 

FASN polyubiquitylation and subsequent protein degradation were also detected in HCT116 

cells (Figs. S3D and S3E). Collectively, these data support a critical role of HDAC3 in 

deacetylating FASN and thus protecting FASN from degradation.

Acetylation promotes FASN interaction with TRIM21 E3 ubiquitin ligase

To elucidate the mechanism underlying acetylation-dependent FASN polyubiquitylation and 

protein degradation, we established a HEK293T cell line that stably expressed FASN N-

terminally tagged with both Flag and streptavidin-binding peptide (SBP). Tandem affinity 

purification followed by mass spectrometry analysis (TAP-MS) allowed us to identify 
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potential interacting partners of FASN (Supplementary Table S2). Among these FASN-

interacting proteins, TRIM21 (also known as RNF81, Ro52, and SSA1) which is a RING 

domain E3 ubiquitin ligase (41), DDB1 and SMU1 which are components of the CUL4A 

and CUL4B-based E3 ubiquitin ligase complexes, FBXO22 which is a substrate-recognition 

component of the SCF (SKP1-CUL1-F-box)-type E3 ubiquitin ligase complex, and CUL5 

E3 ubiquitin ligase were identified. Next, we transiently co-expressed FASN-Flag, HA-Ub, 

and Myc-tagged CUL1, CUL4A, CUL4B, CUL5, and TRIM21, and found that Myc-

TRIM21, but not cullin proteins, substantially increased the polyubiquitylation level of 

FASN-Flag (Figs. S4A and S4B). Furthermore, ectopic expression of TRIM21 increased the 

polyubiquitylation level of endogenous FASN in HCT116 cells (Fig. S4C). The association 

of endogenous FASN with either ectopically expressed or endogenous TRIM21 was 

confirmed by western blot analyses, and importantly, the FASN-TRIM21 association is 

enhanced by treatment with HDAC inhibitors in either 293T or HCT116 cell (Figs. 5A, 5B 

and S4D). Ectopic expression of wild-type TRIM21, but not the catalytically inactive RING 

deletion mutant TRIM21, reduced endogenous FASN protein level by 43% in HEK293T 

cells (Fig. 5C). Conversely, TRIM21 knockout increased endogenous FASN protein levels 

by >1.5-fold in stable HEK293T cells (Fig. 5D) without altering FASN mRNA expression. 

In addition, we also found that either MG132 or TSA treatment substantially enhanced the 

increased level of polyubiquitylated FASN-Flag in HEK293T cells ectopically expressing 

Myc-TRIM21 (Fig. 5E). Notably, the effect of TSA or RGFP966 on enhancing FASN 

polyubiquitylation was abolished by TRIM21 deletion in HEK293T cells (Figs. 5F). 

Together, these results indicate that acetylation enhances FASN interaction with its E3 

ubiquitin ligase TRIM21, thereby promoting FASN polyubiquitylation and destabilization.

Acetylation of FASN inhibits de novo lipogenesis and tumor cell growth

FASN is essential for de novo fatty acid synthesis to support cancer cell growth (15). 

Inhibition of de novo fatty acid synthesis causes cell apoptosis and suppresses tumor cell 

growth (14, 42). We therefore investigated the role of FASN acetylation in regulating de 
novo lipogenesis and cell proliferation. When HCT116 cells were treated with TSA and 

RGFP966, we found that the level of endogenous FASN was reduced by 40% and 49%, 

respectively (Fig. 6A). These reductions in FASN protein led to decreased FASN activity in 

whole cell lysate by 50% and 60%, respectively, as measured by spectrophotometrically 

recorded oxidation of NADPH (Fig. 6A). Stimulated Raman Scattering (SRS) microscope 

has been applied to analyze biological components within cells and tissues by mapping the 

distribution of diverse biochemical components (35)._ENREF_1 Here, we employed a 

hyperspectral femtosecond SRS microscope to detect the lipid content in HCT116 cells upon 

treatment with TSA or RGFP966. The Raman signals at 2850 and 2928 cm−1 (S2850 and 

S2928) reflect the lipid and protein contents, respectively (Figs. S5A and S5B). We found in 

HCT116 cells that the ratio of S2850/S2928 was markedly decreased by 7.93% (P = 0.02) 

and 10.2% (P = 0.0079), after TSA and RGFP966 treatment, respectively (Fig. 6B), 

suggesting that broad inhibition of HDAC enzymes or selective inhibition of HDAC3 reduce 

intracellular lipid content. Importantly, ectopic expression of FASN rescued the decrease in 

lipid content caused by either TSA or RGFP966 treatment (Fig. 6B and S5C), supporting the 

notion that FASN acetylation inhibits de novo lipogenesis in cancer cells.
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Stable expression of FASN-Flag and treatment with HDAC3 inhibitor RGFP966 resulted in 

significant increase and decrease of HCT116 cell proliferation (Fig. 6C and S5C). The cell 

proliferation stimulatory effect of FASN was blunted by RGFP966 treatment (Fig. 6C). The 

same effects of FASN overexpression and HDAC3 inhibitor on cell proliferation were also 

observed in ZR-75-30 breast cancer cells (Fig. S5C and Fig. 6E). RGFP966 treatment in 

both cell lines resulted in decreased levels of FASN protein (Figs. 6D and 6F). Taken 

together, these results support the notion that inhibition of HDAC3 promotes FASN protein 

degradation, thereby decreasing de novo lipogenesis and cell proliferation in a cell type 

independent manner.

Acetylation of FASN is downregulated in HCC tumors

Hepatocellular carcinoma cancer (HCC) is one of the most common tumors worldwide (43). 

FASN is highly expressed in many human cancers, including liver cancer (3). Our findings 

that acetylation promotes FASN degradation and inhibits the ability of FASN to support 

cancer cell proliferation prompted us to examine both acetylation and total protein levels of 

FASN in human liver cancers. We carried out direct immunoblot analysis of a panel of 17 

pairs of primary HCC tumors and their adjacent normal tissues. This analysis revealed that 

the acetylation level of FASN was invariably reduced in all HCC tumor tissues tested when 

compared to adjacent normal tissues (Figs. 7A, S6A, and 7C). Of these 17 pairs of samples, 

14 tumor samples exhibited a significant increase in the steady-state level of FASN protein, 

while 3 tumor samples had reduced FASN protein levels compared to their corresponding 

normal tissues (Figs. 7A, S6B, and 7B). Interestingly, most of the tested HCC tumors (15 of 

17 pairs) exhibited increased HDAC3 protein expression compared to adjacent normal 

tissues (Figs. 7A, S6B, and 7D). Finally, our data demonstrate that FASN protein levels had 

a negative correlation with FASN acetylation levels in HCC tumors and adjacent normal 

tissues (R2=0.1510, P = 0.0231) (Fig. 7E), and HDAC3 protein levels had a positive 

correlation with FASN protein levels in HCC tumors and adjacent normal tissues 

(R2=0.1596, P = 0.0192) (Fig. 7F). Furthermore, FASN protein levels had no significant 

association with either KAT8 (Figs.7A, and S6B) or TRIM21 (Figs. S6C–F) in HCC tumors 

and adjacent normal tissues. Collectively, these data indicate that acetylation of FASN is 

frequently downregulated in HCC tumors, which is at least in part associated with increased 

HDAC3. Thus, FASN acetylation and HDAC3 may be potential biomarkers for HCC 

tumors.

Discussion

Reprogramming of metabolic pathways is a hallmark of cancer (15, 44). Proliferating cancer 

cells require continuous de novo fatty acids synthesis to provide precursors for membrane 

biogenesis. Deregulated de novo lipogenesis causes abnormal accumulation of fatty acids, 

affects signal transduction and gene expression, and eventually influence tumor cell survival. 

FASN, as one of the rate-limiting enzymes in the de novo lipogenesis pathway, has been 

found to be overexpressed in a wide variety of human cancers by multiple mechanisms (2, 7, 

9, 45). For instance, FASN gene expression is controlled by SREBP-1, which is the major 

transcriptional regulator of FASN and is up-regulated by hypoxia in solid tumors (19); 

Isopeptidase USP2a interacts with and stabilizes FASN by deubiquitinating and preventing 
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its proteasomal degradation (45). In this study, we uncovered a novel biochemical 

mechanism of FASN regulation at the post-transcriptional level. Our data demonstrate that 

KAT8 catalyzes FASN acetylation which then promotes FASN interaction with TRIM21 E3 

ubiquitin ligase, leading to subsequent polyubiquitylation and proteasomal degradation. 

Conversely, HDAC3-mediated deacetylation of FASN contributes to increased FASN protein 

and elevated de novo fatty acid synthesis in tumor cells (Fig. 7G).

TRIM21 belongs to the tripartite motif (TRIM) family and acts as a RING finger domain-

containing E3 ligase (41). Several reported substrates of TRIM21are all involved in innate 

and adaptive immunity, including IRF3, IRF5, IRF7, IRF8, and SQSTM1/p62 (41, 46–50). 

Results from our study demonstrate that FASN is a novel substrate of TRIM21. We show 

that TRIM21 physically interacts with and ubiquitylates FASN to regulate its protein 

stability. Additionally, our data revealed that FASN acetylation enhanced its interaction with 

TRIM21. It will be interesting to determine how TRIM21-mediated FASN ubiquitylation 

affects cellular immunity and other non-proliferative property of the cell.

Our study also shows that HDAC3 inhibitor RGFP966 increases FASN acetylation and 

destabilizes FASN protein, supporting a critical role for HDAC3-regulated FASN acetylation 

in the control of de novo lipid synthesis and the regulation of tumor cell growth/survival. We 

found that in primary hepatocellular carcinoma cancer samples, the acetylation level of 

FASN is frequently reduced, and both FASN and HDAC3 protein levels are up-regulated 

when compared to adjacent normal tissues. These findings indicate that HDAC3 may 

function as an oncogenic factor with a potential role in deacetylating and stabilizing FASN, 

thereby promoting de novo lipid synthesis to support rapid cancer cell growth. These 

findings suggest that HDAC3 inhibitors may merit exploration as a therapeutic agent for 

cancers such as HCC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Acetylation promotes FASN protein degradation
(A) HEK293T cells overexpressing FASN was treated without or with control solvent, NAM 

(5 mM, 6 hours) and/or TSA (0.5 mM, 16 hours). Acetylation levels of immunopurified 

FASN-Flag were determined by Western blot using a pan-anti-acetyllysine antibody (α-

AcK). IP denotes immunoprecipitation. Relative FASN acetylation was normalized by Flag 

protein.

(B) Endogenous FASN protein was immunoprecipitated with an anti-FASN antibody from 

the indicated cells treated with control solvent alcohol or TSA (0.5 mM, 16 hours). 

Acetylation levels of endogenous FASN were determined by Western blot.

(C) Quantification of acetylation levels of endogenous FASN in the indicated cell lines in 

(B). Relative FASN acetylation ratios were calculated after normalizing against total FASN 

protein.

(D) The indicated cells were treated with control solvent alcohol or TSA (0.5 mM, 16 

hours), followed by Western blot to determine endogenous FASN protein levels.

(E) Quantification of endogenous FASN protein levels in the indicated cell lines in (D). 

Relative FASN protein levels were normalized by β-actin.

(F) The indicated cells were treated with control solvent alcohol or TSA (0.5 mM, 16 

hours), followed by qRT-PCR to determine endogenous FASN mRNA expression.

Shown are average values with standard deviation (S.D.) of triplicated experiments.

*Denotes P < 0.05, and **denotes P < 0.01 for the indicated comparison; n.s. = not 

significant.
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Figure 2. Acetylation promotes FASN protein polyubiquitylation and destabilization
(A) HCT116 cells were pre-treated with control solvent alcohol or TSA (0.5 mM, 4 hours), 

and then subjected to CHX treatment (10 μg/ml) for the indicated time course. Endogenous 

FASN protein level was analyzed by Western blot (left). Quantification of endogenous 

FASN protein levels are shown (right).

(B) HEK293T cells were treated with MG132 (10 μM) for the indicated time course. 

Endogenous FASN protein level was analyzed by Western blot. Relative FASN protein 

levels were normalized by β-actin.

(C) HEK293T cells were treated with control solvent alcohol or TSA (0.5 μM) in the 

absence or presence of MG132 (10 μM). Endogenous FASN protein level was analyzed by 

Western blot, normalized by β-actin protein (top). Please note that the protein levels of 

endogenous FASN or β-actin in lane 1/2 and lane 3 were determined on the same blot. 

Quantification of endogenous FASN protein levels are shown (bottom). Shown are average 

values with standard deviation (S.D.) of triplicated experiments.

(D–E) Polyubiquitylation levels of affinity purified FASN-Flag proteins were detected by 

Western blot in transfected HEK293T cells under treatment with control solvent, NAM 

and/or TSA in the absence (D) or presence (E) of MG132 (10 μM, 6 hours).
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(F) Polyubiquitylation, acetylation, and the protein levels of endogenous FASN in HEK293T 

cells under treatment with control solvent alcohol or TSA (0.5 mM, 16 hours) were detected 

by Western blot.
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Figure 3. KAT8 is a major acetyltransferase of FASN
(A–B) Interaction between the indicated Myc-tagged KAT proteins and endogenous FASN 

was detected by Western blot.

(C) Increased amount of Myc-KAT8 was transiently overexpressed in HEK293T cells, and 

then acetylation levels of endogenous FASN proteins were determined.

(D) Stable HEK293T cells with KAT8 knockdown were generated by retroviral infection, 

and the knockdown efficiency was determined by qRT-PCR (bottom). Acetylation levels of 

endogenous FASN were detected by Western blot (top).

(E) Myc-KAT8 was transiently overexpressed in HEK293T cells, and then mRNA and 

protein levels of endogenous FASN were determined by qRT-PCR and western blot, 

respectively. Relative FASN protein levels were normalized by β-actin.

(F) In stable HEK293T cells with KAT8 knockdown, mRNA and protein levels of 

endogenous FASN were determined by qRT-PCR and western blot, respectively.

Shown are average values with standard deviation (S.D.) of triplicated experiments.
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Figure 4. HDAC3 is a major acetyltransferase of FASN
(A) Flag-tagged FASN was overexpressed in HEK293T cells in combination with different 

HA-tagged HDACs as indicated. Flag-FASN protein was immunopurified, followed by 

Western blot to detect its interaction with HA-tagged HDACs.

(B) In HEK293T cells, FASN protein was immunopurified with FASN antibody, followed 

by Western blot to detect HDAC3 interaction.

(C) HA-tagged wild-type HDAC3 or its catalytically inactive mutant HDAC3Y298H was 

expressed in HEK293T cells. FASN protein was immunopurified with FASN antibody, 

followed by Western blot to detect its acetylation.

(D) Flag-tagged FASN and HA-tagged Ub plasmids were co-overexpressed in HEK293T 

cells, which were then subjected to increased concentrations of RGFP966 as indicated. 

FASN protein was immunopurified with Flag beads, followed by Western blot to detect 

FASN polyubiquitylation with a HA antibody.

(E) HEK293T cells were subjected to increased concentrations of RGFP966 as indicated. 

Endogenous FASN was immunopurified, followed by Western blot to detect its acetylation 

and ubiquitylation levels.

(F) HEK293T cells were subjected to increasing concentrations of RGFP966 or TSA as 

indicated. Endogenous FASN mRNA and protein levels were determined by qRT-PCR and 
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Western blot, respectively. Shown are average values with standard deviation (S.D.) of 

triplicated experiments.
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Figure 5. Acetylation promotes FASN interaction with ubiquitin E3 ligase TRIM21
(A) HA-TRIM21 was overexpressed in HEK293T cells, and the transfected cells were 

treated with control solvent alcohol or TSA (0.5 mM, 16 hours). FASN protein was 

immunopurified, followed by Western blot to detect its interaction with HA-TRIM21.

(B) In HEK293T cells treated with control solvent alcohol or TSA (0.5 mM, 16 hours), 

FASN protein was immunopurified with FASN antibody, followed by Western blot to detect 

its interaction with endogenous TRIM21.

(C) Myc-tagged wild-type or E3 ligase catalytic inactive mutant TRIM21ΔRING was 

overexpressed in HEK293T cells. Endogenous FASN mRNA and protein levels were 

determined by qRT-PCR and Western-blot, respectively. Shown are average values with 

standard deviation (S.D.) of triplicated experiments.

(D) In HEK293T cells, TRIM21 gene was deleted by the CRISPR-Cas9 system. TRIM21 

knockout efficiency and endogenous FASN protein level were determined by Western blot 

with the indicated antibodies. Relative FASN protein levels were normalized by β-actin.

(E) TRIM21 promotes FASN polyubiquitylation. FASN-Flag, Myc-TRIM21, and HA-Ub 

were co-overexpressed in HEK293T cells as indicated. The transfected cells were treated 

with control solvents or TSA (0.5 mM, 16 hours) or MG132 (10 μM, 6 hours). FASN-Flag 

was immunopurified with Flag beads, followed by Western blot to detect its 

polyubiquitylation with a HA antibody.
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(F) FASN-Flag and HA-Ub were co-overexpressed in TRIM21 knockout HEK293T cell 

pools and control cells. The transfected cells were treated with control solvents, TSA (0.5 

mM, 16 hours) or RGFP966 (10 μM, 24 hours). FASN-Flag protein was immunopurified, 

followed by Western blot to detect FASN polyubiquitylation with a HA antibody.
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Figure 6. Acetylation of FASN inhibits de novo lipogenesis and suppresses tumor cell growth
(A) HCT116 cells were treated with control solvents, TSA (0.5 mM, 16 hours) or RGFP966 

(10 μM, 24 hours). FASN activity in the whole cell lysates were measured (right). FASN 

protein was immunopurified, followed by Western blot to detect its acetylation. Relative 

FASN protein levels were normalized by β-actin.

(B) HCT116 cells stably expressing empty vector or FASN were treated as mentioned in 

(A). Lipid content was measured and quantified by employing a SRS microscope as 

described in ‘Method’.

(C–F) HCT116 or ZR-75-30 cells stably expressing empty vector or FASN were seeded in 

6-well plates, and were treated with control solvent DMSO or RGFP966 (10 μM) as 

indicated. Cell numbers were counted every day over a period of 5 days (C and E). At day 5, 

cells were harvested, and the acetylation and protein levels of FASN were determined by 

Western blot (D and F). Relative FASN protein levels were normalized by β-actin.
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Figure 7. Acetylation of FASN is downregulated in human hepatocellular cancers
(A) In total, 17 pairs of tumor tissues (T) and adjacent normal tissues (N) were lysed. FASN 

protein was immunopurified with FASN antibody, followed by Western blot to detect its 

acetylation. Protein levels of FASN, HDAC3, and KAT8 were determined by direct Western 

blot. Relative FASN and HDAC3 protein levels were normalized by β-actin. Shown are 5 

pairs of samples. See Figure S6 for the other 12 pairs of samples.

(B–D) Quantification of relative FASN protein, FASN acetylation, and relative HDAC3 

protein levels in the 17 pairs of samples tested.

(E–F) Correlation between FASN protein levels and its acetylation levels (E) or HDAC3 

protein levels (F) in the tested 17 pairs of samples.

Shown are average values with standard deviation (S.D.). Statistical analyses were 

performed with a two-tailed paired t-test. *Denotes P < 0.05, **denotes P < 0.01, and 

***denotes P < 0.001 for the indicated comparison.

(G) Shown is a working model depicting how acetylation promotes FASN protein 

degradation through the ubiquitin-proteasome pathway, thereby inhibiting de novo 
lipogenesis.
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