46,678 research outputs found
Three-Dimensional Vertex Model in Statistical Mechanics, from Baxter-Bazhanov Model
We find that the Boltzmann weight of the three-dimensional Baxter-Bazhanov
model is dependent on four spin variables which are the linear combinations of
the spins on the corner sites of the cube and the Wu-Kadanoff duality between
the cube and vertex type tetrahedron equations is obtained explicitly for the
Baxter-Bazhanov model. Then a three-dimensional vertex model is obtained by
considering the symmetry property of the weight function, which is
corresponding to the three-dimensional Baxter-Bazhanov model. The vertex type
weight function is parametrized as the dihedral angles between the rapidity
planes connected with the cube. And we write down the symmetry relations of the
weight functions under the actions of the symmetry group of the cube. The
six angles with a constrained condition, appeared in the tetrahedron equation,
can be regarded as the six spectrums connected with the six spaces in which the
vertex type tetrahedron equation is defined.Comment: 29 pages, latex, 8 pasted figures (Page:22-29
Quantum transport in noncentrosymmetric superconductors and thermodynamics of ferromagnetic superconductors
We consider a general Hamiltonian describing coexistence of itinerant
ferromagnetism, spin-orbit coupling and mixed spin-singlet/triplet
superconducting pairing in the context of mean-field theory. The Hamiltonian is
diagonalized and exact eigenvalues are obtained, thus allowing us to write down
the coupled gap equations for the different order parameters. Our results may
then be applied to any model describing coexistence of any combination of these
three phenomena. As a specific application of our results, we consider
tunneling between a normal metal and a noncentrosymmetric superconductor with
mixed singlet and triplet gaps. The conductance spectrum reveals information
about these gaps in addition to how the influence of spin-orbit coupling is
manifested. We also consider the coexistence of itinerant ferromagnetism and
triplet superconductivity as a model for recently discovered ferromagnetic
superconductors. The coupled gap equations are solved self-consistently, and we
study the conditions necessary to obtain the coexistent regime of
ferromagnetism and superconductivity. Analytical expressions are presented for
the order parameters, and we provide an analysis of the free energy to identify
the preferred system state. Moreover, we make specific predictions concerning
the heat capacity for a ferromagnetic superconductor. In particular, we report
a nonuniversal relative jump in the specific heat, depending on the
magnetization of the system, at the uppermost superconducting phase transition.
[Shortened abstract due to arXiv submission.]Comment: 19 pages, 15 figures (high quality figures available in published
version). Accepted for publication in Phys. Rev.
Semiclassical effects in black hole interiors
First-order semiclassical perturbations to the Schwarzschild black hole
geometry are studied within the black hole interior. The source of the
perturbations is taken to be the vacuum stress-energy of quantized scalar,
spinor, and vector fields, evaluated using analytic approximations developed by
Page and others (for massless fields) and the DeWitt-Schwinger approximation
(for massive fields). Viewing the interior as an anisotropic collapsing
cosmology, we find that minimally or conformally coupled scalar fields, and
spinor fields, decrease the anisotropy as the singularity is approached, while
vector fields increase the anisotropy. In addition, we find that massless
fields of all spins, and massive vector fields, strengthen the singularity,
while massive scalar and spinor fields tend to slow the growth of curvature.Comment: 29 pages, ReVTeX; 4 ps figure
Universal scaling functions for bond percolation on planar random and square lattices with multiple percolating clusters
Percolation models with multiple percolating clusters have attracted much
attention in recent years. Here we use Monte Carlo simulations to study bond
percolation on planar random lattices, duals of random
lattices, and square lattices with free and periodic boundary conditions, in
vertical and horizontal directions, respectively, and with various aspect ratio
. We calculate the probability for the appearance of
percolating clusters, the percolating probabilities, , the average
fraction of lattice bonds (sites) in the percolating clusters,
(), and the probability distribution function for the fraction
of lattice bonds (sites), in percolating clusters of subgraphs with
percolating clusters, (). Using a small number of
nonuniversal metric factors, we find that , ,
(), and () for random lattices, duals
of random lattices, and square lattices have the same universal finite-size
scaling functions. We also find that nonuniversal metric factors are
independent of boundary conditions and aspect ratios.Comment: 15 pages, 11 figure
Quantum Stress Tensor Fluctuations of a Conformal Field and Inflationary Cosmology
We discuss the additional perturbation introduced during inflation by quantum
stress tensor fluctuations of a conformally invariant field such as the photon.
We consider both a kinematical model, which deals only with the expansion
fluctuations of geodesics, and a dynamical model which treats the coupling of
the stress tensor fluctuations to a scalar inflaton. In neither model do we
find any growth at late times, in accordance with a theorem due to Weinberg.
What we find instead is a correction which becomes larger the earlier one
starts inflation. This correction is non-Gaussian and highly scale dependent,
so the absence of such effects from the observed power spectra may imply a
constraint on the total duration of inflation. We discuss different views about
the validity of perturbation theory at very early times during which currently
observable modes are transplanckian.Comment: 31 pages, 1 figure, uses LaTeX2epsilo
Inflationary cosmology with scalar field and radiation
We present a simple, exact and self-consistent cosmology with a
phenomenological model of quantum creation of radiation due to decay of the
scalar field. The decay drives a non-isentropic inflationary epoch, which exits
smoothly to the radiation era, without reheating. The initial vacuum for
radiation is a regular Minkowski vacuum. The created radiation obeys standard
thermodynamic laws, and the total entropy produced is consistent with the
accepted value. We analyze the difference between the present model and a model
with decaying cosmological constant previously considered.Comment: 13 pages Latex; to appear Gen. Rel. Gra
Time-dependent Ginzburg-Landau equations for mixed d- and s-wave superconductors
A set of coupled time-dependent Ginzburg-Landau equations (TDGL) for
superconductors of mixed d- and s-wave symmetry are derived microscopically
from the Gor'kov equations by using the analytical continuation technique. The
scattering effects due to impurities with both nonmagnetic and magnetic
interactions are considered. We find that the d- and s-wave components of the
order parameter can have very different relaxation times in the presence of
nonmagnetic impurities. This result is contrary to a set of phenomenologically
proposed TDGL equations and thus may lead to new physics in the dynamics of
flux motion.Comment: 22 pages, 6 figures are available upon request, to appear in Phys.
Rev.
Stochastic Gravity: Beyond Semiclassical Gravity
The back-reaction of a classical gravitational field interacting with quantum
matter fields is described by the semiclassical Einstein equation, which has
the expectation value of the quantum matter fields stress tensor as a source.
The semiclassical theory may be obtained from the quantum field theory of
gravity interacting with N matter fields in the large N limit. This theory
breaks down when the fields quantum fluctuations are important. Stochastic
gravity goes beyond the semiclassical limit and allows for a systematic and
self-consistent description of the metric fluctuations induced by these quantum
fluctuations. The correlation functions of the metric fluctuations obtained in
stochastic gravity reproduce the correlation functions in the quantum theory to
leading order in an 1/N expansion. Two main applications of stochastic gravity
are discussed. The first, in cosmology, to obtain the spectrum of primordial
metric perturbations induced by the inflaton fluctuations, even beyond the
linear approximation. The second, in black hole physics, to study the
fluctuations of the horizon of an evaporating black hole.Comment: 12 pages, no figures, proceedings of the XXIX Spanish Relativity
Meetin
Anisotropy and oblique total transmission at a planar negative-index interface
We show that a class of negative index (n) materials has interesting
anisotropic optical properties, manifest in the effective refraction index that
can be positive, negative, or purely imaginary under different incidence
conditions. With dispersion taken into account, reflection at a planar
negative-index interface exhibits frequency selective total oblique
transmission that is distinct from the Brewster effect.
Finite-difference-time-domain simulation of realistic negative-n structures
confirms the analytic results based on effective indices.Comment: to appear in Phys. Rev.
Quantum Theory of Non-Relativistic Particles Interacting with Gravity
We investigate the effects of the gravitational field on the quantum dynamics
of non-relativistic particles. We consider N non-relativistic particles,
interacting with the linearized gravitational field. Using the Feynman - Vernon
influence functional technique, we trace out the graviton field, to obtain a
master equation for the system of particles to first order in . The
effective interaction between the particles, as well as the self-interaction is
non-local in time and in general non-markovian. We show that the gravitational
self-interaction cannot be held responsible for decoherence of microscopic
particles due to the fast vanishing of the diffusion function. For macroscopic
particles though, it leads to diagonalization to the energy eigenstate basis, a
desirable feature in gravity induced collapse models. We finally comment on
possible applications.Comment: Latex,14 pages, replaced to correct the titl
- …