745 research outputs found

    Entanglement detection via condition of quantum correlation

    Full text link
    We develop a novel necessary condition of quantum correlation. It is utilized to construct dd-level bipartite Bell-type inequality which is strongly resistant to noise and requires only analyses of O(d)O(d) measurement outcomes compared to the previous result O(d2)O(d^{2}). Remarkably, a connection between the arbitrary high-dimensional bipartite Bell-type inequality and entanglement witnesses is found. Through the necessary condition of quantum correlation, we propose that the witness operators to detect truly multipartite entanglement for a generalized Greenberger-Horne-Zeilinger (GHZ) state with two local measurement settings and a four-qubit singlet state with three settings. Moreover, we also propose the first robust entanglement witness to detect four-level tripartite GHZ state with only two local measurement settings

    Urban-Rural Disparity of Generics Prescription in Taiwan: The Example of Dihydropyridine Derivatives

    Get PDF
    The aim of the current study was to investigate the urban-rural disparity of prescribing generics, which were usually cheaper than branded drugs, within the universal health insurance system in Taiwan. Data sources were the cohort datasets of National Health Insurance Research Database with claims data in 2010. The generic prescribing ratios of dihydropyridine (DHP) derivatives (the proportion of DHP prescribed as generics to all prescribed DHP) of medical facilities were examined against the urbanization levels of the clinic location. Among the total 21,606,914 defined daily doses of DHP, 35.7% belonged to generics. The aggregate generic prescribing ratio rose from 6.7% at academic medical centers to 15.3% at regional hospitals, 29.4% at community hospital, and 66.1% at physician clinics. Among physician clinics, the generic prescribing ratio in urban areas was 63.9 ± 41.0% (mean ± standard deviation), lower than that in suburban (69.6 ± 38.7%) and in rural (74.1% ± 35.3%). After adjusting the related factors in the linear regression model, generic prescribing ratios of suburban and rural clinics were significantly higher than those of urban clinics (ÎČ=0.043 and 0.077; P=0.024 and 0.008, resp.). The generic prescribing ratio of the most popular antihypertensive agents at a clinic was reversely associated with the urbanization level

    The analysis of occurrences associated with air traffic volume and air traffic controllers’ alertness for fatigue risk management

    Get PDF
    Fatigue is an inevitable hazard in the provision of air traffic services and it has the potential to degrade human performance leading to occurrences. The International Civil Aviation Organization (ICAO) requires air navigation services which providers establish fatigue risk management systems (FRMS) based on scientific principles for the purpose of managing fatigue. To develop effective FRMSs, it is important to investigate the relationship between traffic volume, air traffic management occurrences, and fatigue. Fifty‐seven qualified ATCOs from a European Air Navigation Services provider participated in this research by providing data indicating their alertness levels over the course of a 24‐hour period. ATCOs’ fatigue data were compared against the total of 153 occurrences and 962,328 air traffic volumes from the Eurocontrol TOKAI incident database in 2019. The result demonstrated that ATCO fatigue levels are not the main contributory factor associated with air traffic management occurrences, although fatigue did impact ATCOs’ performance. High traffic volume increases ATCO cognitive task load that can surpass available attention resources leading to occurrences. Furthermore, human resilience drives ATCOs to maintain operational safety though they suffer from circadian fatigue. Consequently, FRMS appropriately implemented can be used to mitigate the effects of fatigue. First‐line countermeasure strategies should focus on enough rest breaks and roster schedule optimization; secondary strategies should focus on monitoring ATCOs’ task loads that may induce fatigue. It is vital to consider traffic volume and ATCOs’ alertness levels when implementing effective fatigue risk management protocols

    Evaluation of an automated method for arterial input function detection for first-pass myocardial perfusion cardiovascular magnetic resonance

    Get PDF
    Background: Quantitative assessment of myocardial blood flow (MBF) with first-pass perfusion cardiovascular magnetic resonance (CMR) requires a measurement of the arterial input function (AIF). This study presents an automated method to improve the objectivity and reduce processing time for measuring the AIF from first-pass perfusion CMR images. This automated method is used to compare the impact of different AIF measurements on MBF quantification.Methods: Gadolinium-enhanced perfusion CMR was performed on a 1.5 T scanner using a saturation recovery dual-sequence technique. Rest and stress perfusion series from 270 clinical studies were analyzed. Automated image processing steps included motion correction, intensity correction, detection of the left ventricle (LV), independent component analysis, and LV pixel thresholding to calculate the AIF signal. The results were compared with manual reference measurements using several quality metrics based on the contrast enhancement and timing characteristics of the AIF. The median and 95 % confidence interval (CI) of the median were reported. Finally, MBF was calculated and compared in a subset of 21 clinical studies using the automated and manual AIF measurements.Results: Two clinical studies were excluded from the comparison due to a congenital heart defect present in one and a contrast administration issue in the other. The proposed method successfully processed 99.63 % of the remaining image series. Manual and automatic AIF time-signal intensity curves were strongly correlated with median correlation coefficient of 0.999 (95 % CI [0.999, 0.999]). The automated method effectively selected bright LV pixels, excluded papillary muscles, and required less processing time than the manual approach. There was no significant difference in MBF estimates between manually and automatically measured AIFs (p = NS). However, different sizes of regions of interest selection in the LV cavity could change the AIF measurement and affect MBF calculation (p = NS to p = 0.03).Conclusion: The proposed automatic method produced AIFs similar to the reference manual method but required less processing time and was more objective. The automated algorithm may improve AIF measurement from the first-pass perfusion CMR images and make quantitative myocardial perfusion analysis more robust and readily available
    • 

    corecore