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RESEARCH Open Access

Evaluation of an automated method for
arterial input function detection for first-
pass myocardial perfusion cardiovascular
magnetic resonance
Matthew Jacobs1,2, Mitchel Benovoy1,3, Lin-Ching Chang2, Andrew E. Arai1 and Li-Yueh Hsu1*

Abstract

Background: Quantitative assessment of myocardial blood flow (MBF) with first-pass perfusion cardiovascular
magnetic resonance (CMR) requires a measurement of the arterial input function (AIF). This study presents an
automated method to improve the objectivity and reduce processing time for measuring the AIF from first-pass
perfusion CMR images. This automated method is used to compare the impact of different AIF measurements on
MBF quantification.

Methods: Gadolinium-enhanced perfusion CMR was performed on a 1.5 T scanner using a saturation recovery
dual-sequence technique. Rest and stress perfusion series from 270 clinical studies were analyzed. Automated
image processing steps included motion correction, intensity correction, detection of the left ventricle (LV),
independent component analysis, and LV pixel thresholding to calculate the AIF signal. The results were compared
with manual reference measurements using several quality metrics based on the contrast enhancement and
timing characteristics of the AIF. The median and 95 % confidence interval (CI) of the median were reported.
Finally, MBF was calculated and compared in a subset of 21 clinical studies using the automated and manual
AIF measurements.

Results: Two clinical studies were excluded from the comparison due to a congenital heart defect present in
one and a contrast administration issue in the other. The proposed method successfully processed 99.63 % of
the remaining image series. Manual and automatic AIF time-signal intensity curves were strongly correlated with
median correlation coefficient of 0.999 (95 % CI [0.999, 0.999]). The automated method effectively selected bright
LV pixels, excluded papillary muscles, and required less processing time than the manual approach. There was no
significant difference in MBF estimates between manually and automatically measured AIFs (p = NS). However,
different sizes of regions of interest selection in the LV cavity could change the AIF measurement and affect MBF
calculation (p = NS to p = 0.03).

Conclusion: The proposed automatic method produced AIFs similar to the reference manual method but required
less processing time and was more objective. The automated algorithm may improve AIF measurement from
the first-pass perfusion CMR images and make quantitative myocardial perfusion analysis more robust and
readily available.

Keywords: Cardiovascular magnetic resonance, Myocardial perfusion imaging, Arterial input function
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Background
First-pass contrast-enhanced perfusion cardiovascular
magnetic resonance (CMR) is a useful diagnostic tool for
the detection of coronary artery disease [1–3]. Quantita-
tive assessment of myocardial blood flow (MBF) pro-
vides an accurate evaluation of myocardial ischemia,
which appears promising for identifying coronary artery
stenosis [4–8]. Quantitative assessment of MBF, how-
ever, requires the measurement of the arterial input
function (AIF), which represents the transit of contrast
through the left ventricular (LV) cavity [9]. Such AIFs
are typically measured by manually drawing a region of
interest (ROI) within the LV blood pool on a range of 45
to 90 perfusion images. These ROIs must be adjusted to
account for motion from image to image to obtain the
mean time-signal intensity curve. This manual process is
time consuming, which may hinder quantitative assess-
ment of large datasets. In addition, the manual analysis
is subject to inter- and intra-operator variation. It has
been shown that MBF estimates can be influenced by
myocardial ROI contours tracing errors [10]. However,
no detailed study has been conducted regarding how dif-
ferent AIF ROI selections influence MBF measurement.
Although automated AIF detection has been devel-

oped for cerebral perfusion MR, less effort has been
made to automate AIF measurement from perfusion
CMR. Carroll et al. [11] presented a method to measure
the cerebral AIF by excluding late contrast arrival voxels
and selecting the single voxel showing the largest signal
intensity change. Peruzzo et al. [12] method discards
voxels that poorly fit the expected cerebral AIF charac-
teristics and classifies the remaining voxels with agglom-
erative hierarchical clustering to select the AIF voxels.
Yin et al. [13, 14] presented two studies, one using hier-
archical clustering and another using a normalized cut
clustering scheme to select the final cerebral AIF cluster.
Several other automated AIF measurement methods

have been presented in cerebral and tumor studies, but
with a very limited sample size. Shi et al. presented an
automated method applying to rat liver and human
brain images [15]. Their method registers the images
and applies a fast affinity propagation clustering algo-
rithm for the AIF detection. Kim et al. also proposed an
automatic method for use in mice skeletal tumors [16].
They used Kendall’s coefficient of concordance to iden-
tify regions of similar contrast dynamic curves for the
AIF measurement. A combination of active contours
and morphological image processing were also incorpo-
rated to improve the AIF detection.
Semi-automated AIF measurement has also been a

popular research topic outside of the CMR field.
Rijpkema et al. [17] proposed a two-step process of AIF
detection for application to human tumors in the head
and neck, prostate, and brain. Pixels with maximum

contrast concentration greater than two standard devia-
tions above the mean of the image are automatically
thresholded and are interactively thresholded again using
the arrival time of maximum concentration. Parker et al.
[18] followed similar logic to extract AIF from brain,
lung, and prostate images. They started by thresholding
pixels whose maximum concentration arrival time were
within 20 s of a manually determined contrast arrival
time, and finished by selecting the pixels with peak con-
centration within the top 5 % of those remaining. This
maximum concentration arrival time threshold was low-
ered to 10 s in a later work for use in humans with ab-
dominal and pelvic tumors [19].
In addition, the extent to which different AIF ROI se-

lections affect MBF measurement has not been thor-
oughly studied. Miller et al. [20] analyzed inter-operator
variability by having two different people analyze all as-
pects of each perfusion CMR study, including myocar-
dial and AIF ROI placement. They found a moderate
agreement between MBFs from the two operators; how-
ever, this study did not quantify the effect of AIF vari-
ation from different operators since it was merely one of
several uncontrolled variables in MBF quantification.
Outside the CMR field, Cutajar et al. [21] tested the ef-
fect of two differently sized AIFs in renography. For each
patient, two AIFs were measured from two standardized
rectangular ROIs placed within the aorta, one was
12 voxels and the other was 30 voxels in area. These two
AIFs were both used with the same kidney ROI to calcu-
late renal perfusion and glomerular filtration rate, both
of which were found to be significantly affected by the
differently sized AIFs.
Another body of research has been focused on detect-

ing contrast enhancement timing points in perfusion
CMR applications. Zarninaba et al. [22] developed an
automated method for detecting the start of contrast
within the myocardium by sequentially deconvolving the
AIF and tissue response curves under different contrast
start times until a residual curve fit error cap was
reached. The start of contrast resulting in the lowest re-
sidual curve fit error is selected. Breeuwer et al.’s method
[23] detects a contrast enhancement time window for
perfusion analysis. The start time of the window is se-
lected as the point where the LV signal intensity is at a
certain percentage of the LVs peak intensity, and the end
time is placed at a fixed time offset after the myocardial
peak intensity.
Relevant research has also been conducted on seg-

menting the myocardium from perfusion CMR images
based on small datasets. Tarroni et al. [24] presented a
semi-automated method to separate the heart into LV
cavity and myocardial regions. Their method was a
region-based level set technique that required a user-
defined seed point in the LV cavity. Hautvast et al. [25]
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presented an automated method to detect the heart re-
gion and the myocardium. A bounding box similar to
the one used in this study is created around the heart
using Otsu thresholding on temporal maximal and min-
imal intensity projection images. The myocardium is
segmented with a Hankel transform based ring detector
and deformable template for refinement. It should be
noted that due to the emphasis on myocardial segmenta-
tion in these works, their detected LV regions were
based on myocardial image series and included papillary
muscles in the cavity, and thus would not be optimal for
AIF measurement.
In our previous work [26], an automated algorithm

was presented to extract the LV blood cavity signal from
perfusion CMR images using independent component
analysis (ICA) [27] as a method to identify the LV and
the right ventricle (RV).
This study presents an enhanced automated system

for measuring the AIF from first-pass CMR images to
assist quantitative analysis of myocardial perfusion. It is
validated on a large clinical dataset using a dual-
sequence technique for the AIF images [28]. We demon-
strate that the automated approach is more robust, re-
producible, and faster compared to the manual reference
measurements. These results are calculated using several
AIF quality metrics, such as signal intensity upslope,
peak value, time to peak, full width at half maximum,
and an M-value [13, 14]. Additionally, the automated al-
gorithm is used to investigate the impact of different
AIF ROI sizes on fully quantitative MBF estimates in the
myocardial image series and are compared against those
estimated using the manual reference AIF.

Methods
Image acquisition
A retrospective dataset consisting of 270 clinical perfu-
sion CMR studies was analyzed. All studies were per-
formed under procedures and protocols approved by the
institutional review board of the National Heart, Lung
and Blood Institute (NHLBI), and all subjects gave
written informed consent (ClinicalTrials.gov Identifier:
NCT00027170). Each study contained two perfusion im-
aging series, one at rest and one during vasodilator
stress. Gadolinium-DTPA (Magnevist, Berlex Laborator-
ies, Wayne, NJ, USA) was administered (0.05 mmol/kg)
at 5 ml/s during stress and rest perfusion imaging
followed by a saline flush.
Perfusion CMR was performed on a 1.5 T scanner

(Siemens Healthcare, Erlangen, Germany) with a satur-
ation recovery dual-sequence technique [28] at every R-
R interval over 60 heart beats. A steady-state free
precession (SSFP) sequence was used in 245 studies;
while a fast low-angle shot (FLASH) sequence was used
in 25 studies. Typical imaging parameters for the

myocardial perfusion image series included: 90° compos-
ite saturation preparation pulse, 50° (SSFP) or 12°
(FLASH) flip angle, 90 ms (SSFP) or 100 ms (FLASH)
inversion time, 1.2 ms echo time, 2.3 ms repetition time,
8 mm slice thickness, 360 × 270 mm field of view, 128 ×
80 acquisition matrix, 256 × 192 image matrix after
interpolation, and parallel imaging factor of 2 [29]. For
each perfusion imaging, a FLASH low-resolution dedi-
cated AIF image series was also acquired with a separate
saturation pulse and typical parameters of 8° flip angle,
5.0 ms inversion time, 0.7 ms echo time, 1.3 ms repeti-
tive time, 10 mm slice thickness, and 64 × 48 acquisition
and image matrix size. Examples of both the low-
resolution dedicated AIF image series and the myocar-
dial series are shown in Fig. 1. At the start of each perfu-
sion acquisition, two proton density (PD) weighted
images were also acquired with no saturation prepar-
ation pulse for surface coil intensity normalization.

Image processing algorithm
Figure 2 shows the image processing pipeline of the pro-
posed automated algorithm to measure AIFs from the
image series. Note that the same algorithm is applicable
to either dedicated AIF or standard myocardial image
series.

Motion correction
Displacement of the heart can occur during image ac-
quisition due to the patient’s cardiac or respiratory
motion. A non-rigid body image registration technique
based on optical flow computations is used to correct
for anatomical structure motion invariably present in the
perfusion image series [30]. This motion correction is ap-
plied to each series before subsequent image processing.

Heart region detection
The location of the heart region, in the form of a bound-
ing box, is determined in order to aid further processing.
This is achieved by identifying regions most indicative of
the heart ventricles. Candidate ventricle regions are dy-
namically thresholded from a pixel-wise standard devi-
ation map of the time series images. This standard
deviation map highlights pixels with large intensity
changes, such as those caused by contrast agent perfu-
sion, while removing regions that remain constantly
bright, such as the chest wall. This map is thresholded at
one standard deviation above the mean for the AIF
series, and at two standard deviations above the mean
for the myocardial series to obtain the candidate ven-
tricle regions. After binarization, regions that do not
match the temporal signal characteristics of the ventri-
cles are identified and removed. Specifically, regions
whose intensity increase is less than twice their baseline
intensity, indicating minimal contrast enhancement, are
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removed. Regions whose peak intensity occurs within
the first or last 3 frames of the time series are also re-
moved. Next, a similarity check is performed to examine
whether each region represents a unique ventricular
candidate. Similar regions are grouped as a single ven-
tricular region that has been split by papillary muscles,
image artifacts or slice placement. Similar regions are
identified as having average time-signal intensity curves
with a cross-correlation coefficient of more than 0.75,
and whose minimum Euclidean distance is less than the
sum of each region’s average radius. The final regions
are subject to a linear voting scheme to iteratively deter-
mine which two candidate regions are most characteris-
tic of the RV and LV cavities based on their time-signal

features. Features used for voting classification include:
distance to the image center, distance to previously se-
lected candidate regions, size of each region, signal in-
tensity upslope, peak value (PV), time to peak (TTP),
full width at half maximum (FWHM), and an M-value
[13, 14] which combines the previous three features as
shown in Eq. 1.

M ¼ PV
TTP � FWHMð Þ ð1Þ

For each feature, the candidate ventricles are ranked
by how well they match typical ventricle characteristics;
that is those with larger region size, PV, upslope, M-

Time

AIF

Myo

a b c d
Fig. 1 Dynamic contrast enhancement in perfusion CMR image series. The top row shows a low-resolution dedicated AIF series and the bottom
shows a myocardial image series. a The baseline images show the heart without any contrast agent. As time passes, the contrast agent enters
and enhances the b RV, c LV, and d myocardium

Fig. 2 Automated image processing algorithm workflow. Raw images are first motion corrected, before the heart region is detected via segmentation
of candidate ventricle regions from a standard deviation map. A bounding box is created around the selected regions, constraining further processing
steps to this detected heart region. Intensity correction is performed prior to independent component analysis, which detects the time-intensity signal
of the LV and RV. Correlation maps are used to classify each pixel to the RV, LV, or background (see Fig. 3). Finally, bright LV pixels are thresholded to
extract the final AIF measurement (see Fig. 4)
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value, smaller TTP, FWHM, and shorter distances to
image center and to the previously selected ventricles.
The ranks are converted to a score of 1 to N, 1 being
the lowest rank and N, the number of candidate regions,
the highest. The feature scores for each region are to-
taled, and the region with the highest total score is se-
lected as a ventricle region. The second ventricle is
selected similarly. The two selected ventricle regions are
used to create a bounding box around the heart for sub-
sequent processing (see Fig. 2).

Intensity correction
Surface coil intensity correction was based on the corre-
sponding PD weighted images to improve the signal in-
tensity uniformity of the heart region in the perfusion
series. A slightly modified and automated version of the
surface coil intensity correction algorithm presented in
[31] is applied to reduce such inhomogeneity. Based on
a hierarchical weighting scheme for foreground and
background regions, this method estimates a polynomial
signal intensity surface profile from the PD images
which is used to adjust the signal intensity in the image
series. After the surface coil intensity correction, the
image series is further adjusted to remove baseline in-
tensity based on pre-contrast perfusion images.

Ventricular pixel detection
To further the detection of ventricular blood pool pixels
in the images, an ICA algorithm [27] is first used to ob-
tain representative time-signal intensity curves from the
previously identified ventricular regions. Assuming a
mixture of two independent sources of signal (the RV
and LV) in all ventricular regions, ICA separates and ex-
tracts the two primary time-signals that represent the
dynamic contrast of the two ventricles. All of the pixels
in the bounding box are classified to the RV, LV or back-
ground regions by computing their cross correlation to
the RV and LV time-signals after the ICA process. Pixels
with a cross correlation greater than a statistically deter-
mined value of 0.7 are assigned to the matching ven-
tricle; the remaining pixels are then classified as the
background region. The RV is identified as being the
first region to reach peak intensity, which is followed by
the LV region (see Figs. 2 and 3).

AIF extraction
The final step of the algorithm is to select LV pixels that
are brighter than a default threshold to compute an
average intensity value of the blood pool in each image.
This step excludes any papillary muscle pixels that may
have been included in the LV region from the previous
steps because they do not receive any contrast agent and
remain dark. This step also excludes pixels that contain
potential partial volume errors, as these pixels will also

be darker than the average LV pixel. This closely repli-
cates manual analysis, where the LV cavity is a relatively
small but bright region within the heart. The default
threshold was computed from the maximal intensity
projection image as the 75th percentile of the maximal
intensity range of the LV region. Example results are
shown in Figs. 2 and 4, where the red pixels indicate the
pixels selected for the AIF measurement.
Finally, the AIF curve is linearly re-sampled at every

half second to convert the time unit from image frames
to seconds, since the perfusion imaging is performed on
every R-R interval. We refer to this re-sampled curve as
the AIF time-signal intensity curve for the remainder of
the paper and use it in our statistical comparisons.

AIF timing point calculation
In order to calculate important time-signal features for
quantitative perfusion analysis as well as for candidate
ventricle region selection, three contrast enhancement
time points: baseline, start of, and peak contrast en-
hancement are derived from the AIF time-signal inten-
sity curve automatically. First, the peak time is detected
simply from the peak value of the time-signal intensity
curve. The baseline time is determined next as the point
of the curve with minimal intensity variation with its
neighbors (the immediately adjacent points) between the
beginning of the series and the rising peak (indicated by

Fig. 3 ICA detected RV and LV regions and their respective time-signal
intensity curves. This intermediate step detects the maximum possible
LV and RV pixels. Papillary muscles and potential partial volume errors
will be excluded in a later step. Note that the detected RV
signal is only used to differentiate the RV from the LV. The
maximal intensity projection image of the series is displayed
above the mask image for reference
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the point of maximal intensity change before the peak
time). Finally the start time is detected by fitting a line
to the rising peak and selecting the point of the curve
geometrically closest to the intersection of this fitted line
and the baseline intensity. As an example, automatically
detected AIF timing points are shown in Fig. 5.

Quantitative evaluation
Since many of the measurements made were not nor-
mally distributed, the median and 95 % confidence inter-
val (CI) of the median were calculated throughout the

analysis using SPSS Statistics software (International
Business Machines Corp, Armonk, New York). A non-
parametric Mann-Whitney U test [32] was used to de-
termine if there were significant differences between the
automated and manual AIF measurements, with p < 0.05
considered statistically significant.

AIF contrast enchantment characteristics comparisons
The performance of the proposed automated method
was evaluated on both rest and stress image series from
all clinical perfusion studies using custom image analysis
software developed in Interactive Data Language (IDL,
Exelis Visual Information Solutions, Boulder, Colorado).
The results of the automated AIF detection were com-
pared to a reference created by manually drawing an
ROI in the LV blood cavity throughout the entire data-
set. Pearson’s correlation coefficient and normalized root
mean square error (RMSE) were used to evaluate the
similarity between the automated and manual AIF time-
signal intensity curves. Descriptive time-signal statistics
of the AIF were compared which included TTP, FWHM,
PV, signal intensity upslope, and M-value, as described
in the previous sections. As shown in Fig. 6, accurate
AIFs are characterized by high values of PV, upslope, M-
value, and low values of TTP and FWHM [13, 14]. Such
improvements will likely be due to selection of the
brightest LV pixels, exclusion of papillary muscles, and
exclusion of pixels containing partial volume errors.

AIF timing point and myocardial blood flow comparisons
Further evaluation was performed on a subset of 21
clinical studies consisting of dedicated AIF image series
of normal healthy volunteers from the SSFP dataset.
First, the automatically detected first-pass contrast tim-
ing point, the start of peak and peak time, from the

Fig. 4 Comparison of AIF computed from automatically detected LV pixels vs. a manually selected ROI. The selected regions and the AIF curve
measured from them are shown in a. Note how the automatically selected region (red pixels) excludes approximately three darker pixels included
in the manual ROI (green ring), and includes other bright pixels outside the ring. The automatic AIF, as a result, displays a higher peak value and
upslope, while maintaining similar time to peak and full-width at half maximum. Correlation of the manual and automatic AIF curves is shown in
b. Despite the high correlation indicated, the differences in peak signal intensity give the trend line a larger slope (>1)

Fig. 5 Automated AIF time point calculation example. The automatically
detected timing points are displayed with blue markers; from left to
right: baseline, start, and peak contrast enhancement. The green line
shows the calculation of the start of contrast using a fitted slope line
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automated AIF curve were compared against manually
selected ones. Second, fully quantitative MBF estimates
using the automatically and manually measured AIFs
from the dedicated AIF image series were compared. To
facilitate these comparisons, the endocardial and epicar-
dial borders of the myocardium were manually traced by
a trained CMR expert onto the myocardial image series
using the custom software. The defined myocardial
regions were subdivided into six equiangular sectors to
derive myocardial time-signal intensity curves. The MBF
calculation was based on a model constrained deconvo-
lution technique [33]. To observe only the effect of the
AIF upon the MBF, the manually selected timing points
were used in all MBF calculations.
Next, MBF estimates were evaluated again with differ-

ently sized AIF ROI selections. Here we generated three
differently sized ROIs by selecting three different per-
centile thresholds in the AIF extraction part of the auto-
mated algorithm (see “AIF extraction” section): the
default ROI using the 75th percentile, a larger ROI using
the 50th percentile, and the largest ROI using the 25th

percentile. MBF estimates were calculated using each of
these AIFs as described previously.
Finally, the execution time required by the automated

algorithm to extract the AIF was measured on these 21
studies using an Intel Core i7-3770 3.4GHz central pro-
cessing unit (CPU). For comparison, the time required
to manually perform the equivalent processing of the
same input image series to measure the AIF using our
custom software was also measured. The execution time
for both automatic and manual processing included the
time required for image loading, motion correction or
registration, LV ROI selection, and AIF signal intensity
calculation from the ROI. It does not include the myo-
cardial contouring time. It should be noted that the cus-
tom image analysis software was specifically designed to

facilitate quick and efficient manual ROI drawing and
registration.

Results
Two studies out of the initial 270 were excluded from
the comparison: one due to a congenital heart defect
and the other due to a contrast bolus administration
issue. The automated method successfully measured the
AIF from all of the remaining dedicated AIF series, and
from all but four myocardial perfusion series resulting in
a 99.63 % success rate. The automatically selected re-
gions and measured AIF curves were verified visually for
appropriateness.
Figure 2 shows sample intermediate results from the

automated image processing algorithm. Figure 3 shows
more detailed results of the automatic RV and LV cavity
detection step, including the two detected ventricle re-
gions and their respective time-signal intensity curves. It
is important to note first that the detected RV region is
merely used to exclude the RV pixels from AIF measure-
ment. Second, in the detected LV region, papillary mus-
cles have not yet been excluded at this stage, as it
represents the maximum possible extent of the ventricu-
lar area which will be refined in the next intensity
threshold step. Finally, Fig. 4 shows the AIF computed
from the automatically selected LV pixels, after exclud-
ing papillary muscles and pixels with possible partial vol-
ume errors. As a comparison, the AIF measurement
from the manually selected ROI in the LV is also shown.
The correlation coefficient between the manual and

automated AIF time-signal intensity curves showed a
median value of 0.999 (95 % CI [0.999, 0.999]). The
RMSE between the manual and automated time-signal
intensity curves had a median value of 3.33 %, 95 % CI
[3.04 %, 3.73 %] over the whole dataset. To further
evaluate the automated AIFs and compare with the

Fig. 6 Quality metrics for evaluating different AIF curves measured from the same study. Curve a is more characteristic of a good AIF than curve
b due to a higher peak value (PV), larger upslope, shorter time to peak (TTP), and thinner full-width at half-maximum (FWHM). The m-value (Eq. 1)
is also higher for curve a
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manual references, Fig. 7 summarizes the statistical
comparison of the AIF results using several quality met-
rics as shown in Fig. 6.
In the dedicated AIF image series, the temporal statis-

tics of TTP and FWHM showed no significant difference
between the two AIF measurements. However, the PV,
signal intensity upslope, and M-value showed signifi-
cantly higher values for the automated AIFs compared
to the manual results (p < 0.001, p < 0.01, and p = 0.031
respectively). In the myocardial perfusion series, there
was no significant difference between the manual and
automatic statistics in any of the quality metrics.
One important factor in the automated algorithm is

the intensity threshold step in the LV region for the final
AIF extraction. An example of different threshold set-
tings (Fig. 8) demonstrates the trend that the use of a
lower threshold will include more LV pixels and result
in a lower AIF peak value.
On the evaluation of automatically detected AIF tim-

ing points, the differences between the automatically
and manually selected timing points were not statisti-
cally significant. The median absolute difference of the
start time of first-pass contrast was 0.5 s, 95 % CI [0.5,
0.5], while the median absolute difference of the peak
time was 0.0 s, 95 % CI [0.0, 0.5] (both p =NS).
The MBF analysis results are presented in Table 1,

including the manual reference standards and the
proposed automatic method using the default 75th

percentile threshold. No significant difference was found
between the MBF calculated using the manual reference
AIF and the automatically measured AIF (both p =NS).
Table 1 also shows a summary of the MBF measure-
ments resulting from the three AIF threshold compari-
sons: the default 75th, and the alternate 50th and 25th

percentile thresholds. There was no significant difference
in rest series MBFs between the three threshold levels
and the manual reference standard. Stress series, how-
ever, did show a significant increase of MBFs using the
25th percentile threshold (p = 0.030), a directional change
consistent with underestimating the peak of the AIF.
The median execution time of the automated method

to process an image series was 26.1 s, 95 % CI [13.2,
27.1], while the manual methods required 102.2 s, 95 % CI
[95.6, 114.8] (p < 0.001). It should be noted that the pro-
cessing time of the algorithm is affected by image size;
thus the dedicated AIF series required much less time
(12.85 s, 95 % CI [12.61, 12.95]) than the myocardial per-
fusion series (27.5 s, 95 % CI [27.3, 27.6]). In either case,
the automatic method is significantly faster than the man-
ual (both p < 0.001).

Discussion
We have presented an automated system for measuring
the AIF from perfusion CMR image series. It has been
shown to successfully process a wide array of perfusion
series of varying conditions in a large clinical dataset. It

AIF Series (N=540)

a b c d e
Myocardial Series (N=540)

f g h i j
Fig. 7 Comparison of automatically and manually measured AIF statistics using the quality metrics in Fig. 6. Dedicated AIF series statistics are
presented in a–e, and myocardial perfusion series statistics are in f–g. Each box plot shows the median with a blue line and the 95 % confidence interval
(CI) within a box for a, f TTP: time to peak, b, g PV: peak value, c, h upslope, d, i FWHM: full width at half maximum, e, j M-Value. The dedicated AIF series
automatic PV, upslope, and M-value all are significantly higher than their manual counterpart, as shown by their p-values
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has also been shown to be compatible with multiple im-
aging sequences. Automatically measured AIFs were
found to be in agreement with manual measurements
and AIFs measured from dedicated AIF image series
produced similar MBF estimates. Furthermore, we have
shown that while AIF and MBF measurements are ro-
bust to minor variation in blood cavity ROI selections,
extreme differences can affect them, especially under

stress. The automated system is capable of processing a
large variety of image series faster than manual methods,
provides consistently reproducible results, and effectively
removes inter- and intra-operator variation in AIF meas-
urement. These improvements may help make quantita-
tive myocardial perfusion CMR analysis more objective
and readily available to assist in the diagnosis of coron-
ary artery disease.
Previous studies have suggested that accurate AIFs are

normally characterized by high PV, large upslopes, and
higher M-values [13, 14]. Our statistical comparisons
(Fig. 7) indicate that significantly higher PV was mea-
sured in the dedicated AIF series by the automated
system compared with manual ROIs. In addition, signifi-
cantly higher signal intensity upslope, and M-values
were measured by the automated system. The cause is
the proposed method’s ability to detect the brightest LV
pixels in the images, while also effectively excluding
papillary muscle pixels and pixels with potential partial
volume errors. Both of these are essential to avoid
underestimation of the AIF peak signal and the upslope
measurements. This also highlights the potential difficul-
ties caused by inter- and intra-operator variation in
manual measurements and the need for consistent and
reproducible AIF measurements, which the automated
method provides. Furthermore, in addition to being
more reproducible, the execution time comparison also
showed that the automated method is much faster than
the manual method.
The differences between the automatically and manu-

ally selected AIF timing points were found to be negli-
gible, indicating the automatic algorithm is in close
agreement with manual analysis. It should be noted that
the AIF time-intensity curves are sampled every 0.5 s, so
the median error of the automatically detected start of
first pass contrast was only 1 time point. In addition, the
automatically detected peak point was virtually identical
to the manually selected point.
The MBF analysis results (Table 1) show that the auto-

matic method’s AIF produces similar results to manual
measurements (p =NS for the default 75th percentile
threshold setting). The MBF measurements resulting
from the three alternate ROI threshold comparisons
(Table 1) indicate that the AIF is not sensitive to minor
variations in ROI selection. The stress series MBF mea-
surements was found to differ significantly from manual
measurement, but only when selecting the largest tested
AIF region (25th percentile threshold). This extreme ex-
ample, which may include potential partial volume er-
rors or papillary muscles, emphasizes the necessity of
excluding such pixels from the AIF measurement. It
should also be noted that it is unlikely an experienced
operator would draw such an ROI. Furthermore, despite
the fact that our algorithm is applied to both the

Fig. 8 Comparison of the AIF measurements attained from three
different intensity thresholds in the LV region. The regions correspond
to three different intensity thresholds used during automatic AIF
detection: The 75th, 50th and 25th percentile of the maximum LV
intensity range. Note that the lower percentage of the threshold used,
the more LV pixels were included and the lower the peak value of the
AIF was measured

Table 1 Comparison of myocardial blood flow (MBF) estimates
(in ml/g/min) using automated vs. manual AIF measurements

(ml/g/min) Rest MBF Stress MBF

Manual 1.11 [1.06, 1.16] 3.18 [3.01, 3.36]

Auto. 75 % (default) 1.14 [1.09, 1.20] 3.09 [2.96, 3.35]

Auto. 50 % 1.15 [1.09, 1.19] 3.21 [3.08, 3.41]

Auto. 25 % 1.17 [1.11, 1.23] 3.41 [3.22, 3.65]*

All results were calculated using AIFs measured from the dedicated AIF series.
Results are expressed as the median and 95 % confidence interval. Automated
results significantly different from the manual reference standard are marked
with *(p < 0.05)
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dedicated low resolution AIF and standard myocardial
perfusion series, the MBF analysis was performed only
using the AIF from the dedicated AIF series due to sig-
nal saturation in the blood pool of the myocardial series,
which prohibits an accurate AIF measurement.
Two studies were excluded from our quantitative

evaluation. The first was due to a suspected atrial septal
defect which caused premature recirculation of the con-
trast agent and contaminated the first-pass. The second
was classified as non-diagnostic due to inadequate con-
trast bolus administration. Both of these issues would
prevent either a manually or automatically measured
AIF from being usable for MBF quantification. Outside
of these exclusions, the automated method successfully
extracted the AIF from all AIF series and all but four
myocardial series. The issues contributing to the detection
failure included over segmentation in the standard devi-
ation map and ICA signal separation error potentially
resulting from imaging and residual motion artifacts.
Despite these few failed series, the automated method

successfully extracted the AIF from the majority of the
AIF and myocardial image series and overcame the main
pitfall in manual AIF measurement: papillary muscle ex-
clusion. Papillary muscles, which remain dark through-
out the perfusion sequence, can cause underestimation
of the AIF if included in the measurement region. In
order to avoid these complex structures, an ROI may
have to be made very small or irregular in shape which
requires more time to draw manually. The automated
method is at an advantage, as it can reliably detect the
brightest pixels in the LV blood pool, which can be in
either a connected or multiple discrete regions, to com-
pute an AIF for MBF quantification.

Limitations
The default 75 % LV intensity threshold in the final step
of our algorithm was selected based on comparison
with our reference standard manual AIF measure-
ment. Another optimal threshold setting may be
found if different datasets or multiple users were
used to define the reference standard.

Conclusion
We have presented an automated method to remove in-
ter- and intra-operator variation and reduce processing
time for measuring the AIF from first-pass perfusion
CMR images. We have demonstrated that the automated
approach produced similar AIF and MBF estimates to
the reference manual method, but was more robust,
reproducible, and faster. Our results also showed that
different sizes of ROI selection in the LV cavity could
change the AIF measurement and affect MBF calculation.
The proposed method may improve AIF measurement
from the perfusion CMR images and make quantitative

myocardial perfusion analysis more robust and readily
available.
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