154 research outputs found

    Effects of mycophenolate mofetil on cutaneous lupus erythematosus in (NZB × NZW) F1 mice

    Get PDF
    AbstractBackgroundFew studies have evaluated the effects and precise molecular mechanism of mycophenolate mofetil (MMF) in the treatment of human cutaneous lupus erythematosus (CLE). Our findings shed light on the therapeutic effects of MMF in a UVB-induced NZB × NZW (NZBW) F1 CLE mouse model.MethodsContinuous MMF treatment (60 mg/kg/day) was administered up to Day 50 from the beginning of UVB induction (Day 0; 20 weeks old), as the pathologic features of CLE are present after 50 days. The therapeutic effects of MMF treatment in NZBW lupus mice were examined by comparing histopathological changes, lupus band test (deposition of immune complexes at the dermal–epidermal junction) and colocalization of autoantibodies with a dermal autoantigen Dsg3, and by evaluating the associations of local matrix metalloprotease activities.ResultsMMF improved survival in the NZBW lupus mice from 35.7% to 81.8%. The proteinuria, blood urea nitrogen, and interleukin 6 levels were significantly reduced after MMF treatment. The dermal lymphocytic infiltration, deposition of immune complexes at the dermal–epidermal junction, colocalized autoantibodies with Dsg3, and epidermal matrix metalloprotease activity were also attenuated in MMF-treated NZBW F1 mice.ConclusionThe results confirmed that MMF could substantially attenuate skin damage due to CLE in the NZBW F1 mouse model

    Organelle Membrane Proteomics Reveals Differential Influence of Mycobacterial Lipoglycans on Macrophage Phagosome Maturation and Autophagosome Accumulation

    Get PDF
    The mycobacterial cell wall component lipoarabinomannan (LAM) has been described as one of the key virulence factors ofMycobacterium tuberculosis. Modification of the terminal arabinan residues of this lipoglycan with mannose caps in M. tuberculosis or with phosphoinositol caps in Mycobacterium smegmatis results in distinct host immune responses. Given that M. tuberculosis typically persists in the phagosomal vacuole after being phagocytosed by macrophages, we performed a proteomic analysis of that organelle after treatment of macrophages with LAMs purified from the twomycobacterial species. The quantitative changes in phagosomal proteins suggested a distinct role for mannose-capped LAM in modulating protein trafficking pathways that contribute to the arrest of phagosome maturation. Enlightened by our proteomic data, we performed further experiments to show that only the LAM from M. tuberculosis inhibits accumulation of autophagic vacuoles in the macrophage, suggesting a new function for this virulence-associated lipid

    Melatonin acts synergistically with pazopanib against renal cell carcinoma cells through p38 mitogen-activated protein kinase-mediated mitochondrial and autophagic apoptosis

    Get PDF
    Background Mounting evidence indicates that melatonin has possible activity against different tumors. Pazopanib is an anticancer drug used to treat renal cell carcinoma (RCC). This study tested the anticancer activity of melatonin combined with pazopanib on RCC cells and explored the underlying mechanistic pathways of its action. Methods The 786-O and A-498 human RCC cell lines were used as cell models. Cell viability and tumorigenesis were detected with the MTT and colony formation assays, respectively. Apoptosis and autophagy were assessed using TUNEL, annexin V/propidium iodide, and acridine orange staining with flow cytometry. The expression of cellular signaling proteins was investigated with western blotting. The in vivo growth of tumors derived from RCC cells was evaluated using a xenograft mouse model. Results Together, melatonin and pazopanib reduced cell viability and colony formation and promoted the apoptosis of RCC cells. Furthermore, the combination of melatonin and pazopanib triggered more mitochondrial, caspase-mediated, and LC3-II-mediated autophagic apoptosis than melatonin or pazopanib alone. The combination also induced higher activation of the p38 mitogen-activated protein kinase (p38MAPK) in the promotion of autophagy and apoptosis by RCC cells than melatonin or pazopanib alone. Finally, tumor xenograft experiments confirmed that melatonin and pazopanib cooperatively inhibited RCC growth in vivo and predicted a possible interaction between melatonin/pazopanib and LC3-II. Conclusion The combination of melatonin and pazopanib inhibits the growth of RCC cells by inducing p38MAPK-mediated mitochondrial and autophagic apoptosis. Therefore, melatonin might be a potential adjuvant that could act synergistically with pazopanib for RCC treatment

    A Systematic Search of Distant Superclusters with the Subaru Hyper Suprime-Cam Survey

    Full text link
    Superclusters, encompassing environments across a wide range of overdensities, can be regarded as unique laboratories for studying galaxy evolution. Although numerous supercluster catalogs have been published, none of them goes beyond redshift z=0.7z=0.7. In this work, we adopt a physically motivated supercluster definition, requiring that superclusters should eventually collapse even in the presence of dark energy. Applying a friends-of-friends (FoF) algorithm to the CAMIRA cluster sample constructed using the Subaru Hyper Suprime-Cam survey data, we have conducted the first systematic search for superclusters at z=0.51.0z=0.5-1.0 and identified 633633 supercluster candidates over an area of 1027 deg2^2. The FoF algorithm is calibrated by evolving NN-body simulations to the far future to ensure high purity. We found that these high-zz superclusters are mainly composed of 242-4 clusters, suggesting the limit of gravitationally bound structures in the younger Universe. In addition, we studied the properties of the clusters and brightest cluster galaxies (BCGs) residing in different large-scale environments. We found that clusters associated with superclusters are typically richer, but no apparent dependence of the BCG properties on large-scale structures is found. We also compared the abundance of observed superclusters with mock superclusters extracted from halo light cones, finding that photometric redshift uncertainty is a limiting factor in the performance of superclusters detection.Comment: Submitted to ApJ. 29 pages, 22 figures, 6 table

    Influences of Stacking Architectures of TiO 2

    Get PDF
    We investigated the influences of stacking architectures of the TiO2 nanoparticle layers on characteristics and performances of DSSCs. TiO2 nanoparticles of different sizes and compositions were characterized for their morphological and optical/scattering properties in thin films. They were used to construct different stacking architectures of the TiO2 nanoparticle layers for use as working electrodes of DSSCs. Characteristics and performances of DSSCs were examined to establish correlation of the stacking architectures of TiO2 nanoparticle layers with characteristics of DSSCs. The results suggest that the three-layer DSSC architecture, with sandwiching a 20 nm TiO2 nanoparticle layer between a 37 nm TiO2 nanoparticle layer and a hundred nm sized TiO2 back scattering/reflection layer, is effective in enhancing DSSC efficiencies. The high-total-transmittance 37 nm TiO2 nanoparticle layer with a larger haze can serve as an effective front scattering layer to scatter a portion of the incident light into larger oblique angles and therefore increase optical paths and absorption

    IMPAD1 functions as mitochondrial electron transport inhibitor that prevents ROS production and promotes lung cancer metastasis through the AMPK-Notch1-HEY1 pathway

    Get PDF
    The tumor microenvironment (TME) and metabolic reprogramming have been implicated in cancer development and progression. However, the link between TME, metabolism, and cancer progression in lung cancer is unclear. In the present study, we identified IMPAD1 from the conditioned medium of highly invasive CL1-5. High expression of IMPAD1 was associated with a poorer clinical phenotype in lung cancer patients, with reduced survival and increased lymph node metastasis. Knockdown of IMPAD1 significantly inhibited migration/invasion abilities and metastasis in vitro and in vivo. Upregulation of IMPAD1 and subsequent accumulation of AMP in cells increased the pAMPK, leading to Notch1 and HEY1 upregulation. As AMP is an ADORA1 agonist, treatment with ADORA1 inhibitor reduced the expression of pAMPK and HEY1 expression in IMPAD1-overexpressing cells. IMPAD1 caused mitochondria dysfunction by inhibiting mitochondrial Complex I activity, which reduced mitochondrial ROS levels and activated the AMPK-HEY1 pathway. Collectively this study supports the multipotent role of IMPAD1 in promotion of lung cancer metastasis by simultaneously increasing AMP levels, inhibition of Complex I activity to decrease ROS levels, thereby activating AMPK-Notch1-HEY1 signaling, and providing an alternative metabolic pathway in energy stress conditions

    MRE11 promotes oral cancer progression through RUNX2/CXCR4/AKT/FOXA2 signaling in a nuclease-independent manner

    Get PDF
    MRE11, the nuclease component of RAD50/MRE11/NBS1 DNA repair complex which is essential for repair of DNA double-strand-breaks in normal cells, has recently garnered attention as a critical factor in solid tumor development. Herein we report the crucial role of MRE11 in oral cancer progression in a nuclease-independent manner and delineate its key downstream effectors including CXCR4. MRE11 expression in oral cancer samples was positively associated with tumor size, cancer stage and lymph node metastasis, and was predictive of poorer patient survival and radiotherapy resistance. MRE11 promoted cell proliferation/migration/invasion in a nuclease-independent manner but enhanced radioresistance via a nuclease-dependent pathway. The nuclease independent promotion of EMT and metastasis was mediated by RUNX2, CXCR4, AKT, and FOXA2, while CXCR4 neutralizing antibody mitigated these effects in vitro and in vivo. Collectively, MRE11 may serve as a crucial prognostic factor and therapeutic target in oral cancer, displaying dual nuclease dependent and independent roles that permit separate targeting of tumor vulnerabilities in oral cancer treatment
    corecore