65 research outputs found

    Discovery of new low-excitation planetary nebulae

    Get PDF
    We report a multi-wavelength study of four new planetary nebula (PN) candidates selected from the INT/WFC Photometric Ha Survey of the Northern Galactic Plane (IPHAS) and Deep Sky Hunter (DSH) catalogues. We present mid-resolution optical spectra of these PNs. The PN status of our sample was confirmed by optical narrow-band images and mid-resolution spectra. Based on the locations of these objects in the log (Ha/[N II]) versus log (Ha/[S II]) diagnostic diagram, we conclude that these sources are evolved lowexcitation PNs. The optical and infrared appearances of these newly discovered PNs are discussed. Three of the new nebulae studied here are detected in infrared and have low infrared-to-radio flux ratios, probably suggesting that they are evolved. Furthermore, we derive the dynamical ages and distances of these nebulae and study the spectral energy distribution for one of them with extensive infrared archival data.Comment: 11 pages, 9 figures, 6 tables, accepted for publication on Astronomy & Astrophysic

    The Evidence for a Binary origin of the Young Planetary Nebula HB 12

    Get PDF
    The young planetary nebulae play an important role in stellar evolution when intermediate- to low-mass stars (0.8 ∼\sim 8 M⊙_\odot) evolve from the proto-planetary nebulae phase to the planetary nebulae phase. Many young planetary nebulae display distinct bipolar structures as they evolve away from the proto-planetary nebulae phase. One possible cause of their bipolarity could be due to a binary origin of its energy source. Here we report our detailed investigation of the young planetary nebula, Hubble 12, which is well-known for its extended hourglass-like envelope. We present evidence with time-series photometric observations the existence of an eclipsing binary at the center of Hubble 12. Low-resolution spectra of the central source show, on the other hand, absorption features such as CN, G-band & Mg b{\arcsec}, which can be suggestive of a low-mass nature of the secondary component.Comment: 9 pages, 11 figures, Accepted for publication in A

    An Optical-Infrared Study of the Young Multipolar Planetary Nebula NGC 6644

    Get PDF
    High-resolution HST imaging of the compact planetary nebula NGC 6644 has revealed two pairs of bipolar lobes and a central ring lying close to the plane of the sky. From mid-infrared imaging obtained with the Gemini Telescope, we have found a dust torus which is oriented nearly perpendicular to one pair of the lobes. We suggest that NGC 6644 is a multipolar nebula and have constructed a 3-D model which allows the visualization of the object from different lines of sight. These results suggest that NGC 6644 may have similar intrinsic structures as other multipolar nebulae and the phenomenon of multipolar nebulosity may be more common than previously believed.Comment: 31 pages, 13 figures, accepted for publication in Ap

    Studies of Optically Induced Magnetization Dynamics in Colloidal Iron Oxide Nanocrystals

    Get PDF
    Studying dynamics of magnetization relaxation in excited magnetic materials is important both for understanding the rates and pathways of magnetization relaxation and for the potential use in spin-based electronics and data storage devices in the future. Previous studies have demonstrated that the size of nanocrystals is an important factor for energy relaxation in quantum dots and metal nanoparticles. Since magnetization relaxation is one of energy relaxation pathways, the size of nanocrystals may be also an important factor for magnetization relaxation in nanoscale magnetic materials. The goal of this study is to have a better understanding of magnetization relaxation in nanoscale magnetic materials. In particular, we focused on the correlation between the nanocrystal size and the rates of spin-lattice relaxation (SLR), a magnetization relaxation pathway, in magnetic nanocrystals. The size-dependent magnetization relaxation rate after optically induced demagnetization in colloidal Fe3O4 nanocrystals was measured by using time-resolved Faraday rotation (FR). Fe3O4 nanocrystals were chosen as the model system to study the correlation between the size of nanocrystals and the rates of SLR due to the wellestablished synthetic procedure of making nanocrystals with various sizes and narrow size dispersion. Faster SLR rates were observed in smaller Fe3O4 nanocrystals. The results suggested the surface of nanocrystals have higher efficiency of SLR than the interior region by using a simple model to analyze the SLR rates of Fe3O4 nanocrystals with various sizes. Higher efficiency of SLR at the surface may be due to the stronger spin-orbit coupling at the surface relative to the interior region. In addition to magnetization dynamics studies, the effect of oxidation on static FR in iron oxide nanocrystals (between Fe3O4 and y-Fe2O3) was studied. The results indicated FR signal is linearly correlated to the strength of optical transition between Fe2 and Fe3 in Fe3O4 for a given size of nanocrystals

    Do Water Fountain Jets Really Indicate the Onset of the Morphological Metamorphosis of Circumstellar Envelopes?

    Get PDF
    The small-scale bipolar jets having short dynamical ages from "water fountain (WF)" sources are regarded as an indication of the onset of circumstellar envelope morphological metamorphosis of intermediate-mass stars. Such process usually happens at the end of the asymptotic giant branch (AGB) phase. However, recent studies found that WFs could be AGB stars or even early planetary nebulae. This fact prompted the idea that WFs may not necessarily be objects at the beginning of the morphological transition process. In the present work, we show that WFs could have different envelope morphologies by studying their spectral energy distribution profiles. Some WFs have spherical envelopes that resembles usual AGB stars, while others have aspherical envelopes which are more common to post-AGB stars. The results imply that WFs may not represent the earliest stage of the morphological metamorphosis. We further argue that the dynamical age of a WF jet, which can be calculated from maser proper motions, may not be the real age of the jet. The dynamical age cannot be used to justify the moment when the envelope begins to become aspherical, nor to tell the concrete evolutionary status of the object. A WF jet could be the innermost part of a larger well-developed jet, which is not necessarily a young jet.Comment: 21 pages, 4 figures, accepted for publication in MNRA
    • …
    corecore