607 research outputs found
High pressure air valve Patent
Development and characteristics of high pressure control valv
Remotely operated high pressure valve protects test personnel
High pressure valve used in testing certain spacecraft systems is safely opened and closed by a remotely stationed operator. The valve is self-regulating in that if the incoming pressure drops below a desired value the valve will automatically close, warning the operator that the testing pressure has dropped to an undesired level
Insertion device for pressure testing
Test device which introduces either pressure or vacuum into a test pipe or tube, is insertable into the tested item where it secures itself into position and requires no external support. The unit has an operating range from zero to 25,000 psig and to any vacuum level that available equipment can reach
Replaceable filters and cones for flared-tubing connectors
Connector is modified by machining the cone from one end before the fitting is bored to accommodate a metallic-filament type of slip-in filter. Thus, when surface of the cone is damaged, only the cone needs replacement
Bench vise adapter grips tubing securely and safely
Plastic self-compressing adapter with grooves, attached to the jaws of a bench vise, secures thin-wall tubing vertically or horizontally during cutting and flaring operations without marring or damaging it. Magnets incorporated in both sections of the adapter prevent detachment from the jaws when the vise is opened
Perturbation of an Eigen-Value from a Dense Point Spectrum : An Example
We study a perturbed Floquet Hamiltonian depending on a coupling
constant . The spectrum is assumed to be pure point and
dense. We pick up an eigen-value, namely , and show the
existence of a function defined on such that
for all , 0 is a point of
density for the set , and the Rayleigh-Schr\"odinger perturbation series
represents an asymptotic series for the function . All ideas
are developed and demonstrated when treating an explicit example but some of
them are expected to have an essentially wider range of application.Comment: Latex, 24 pages, 51
Inverse Scattering at a Fixed Quasi-Energy for Potentials Periodic in Time
We prove that the scattering matrix at a fixed quasi--energy determines
uniquely a time--periodic potential that decays exponentially at infinity. We
consider potentials that for each fixed time belong to in space. The
exponent 3/2 is critical for the singularities of the potential in space. For
this singular class of potentials the result is new even in the
time--independent case, where it was only known for bounded exponentially
decreasing potentials.Comment: In this revised version I give a more detailed motivation of the
class of potentials that I consider and I have corrected some typo
The SKA Particle Array Prototype: The First Particle Detector at the Murchison Radio-astronomy Observatory
We report on the design, deployment, and first results from a scintillation
detector deployed at the Murchison Radio-astronomy Observatory (MRO). The
detector is a prototype for a larger array -- the Square Kilometre Array
Particle Array (SKAPA) -- planned to allow the radio-detection of cosmic rays
with the Murchison Widefield Array and the low-frequency component of the
Square Kilometre Array. The prototype design has been driven by stringent
limits on radio emissions at the MRO, and to ensure survivability in a desert
environment. Using data taken from Nov.\ 2018 to Feb.\ 2019, we characterize
the detector response while accounting for the effects of temperature
fluctuations, and calibrate the sensitivity of the prototype detector to
through-going muons. This verifies the feasibility of cosmic ray detection at
the MRO. We then estimate the required parameters of a planned array of eight
such detectors to be used to trigger radio observations by the Murchison
Widefield Array.Comment: 17 pages, 14 figures, 3 table
Recommended from our members
Detectability of Neuronal Currents in Human Brain with Magnetic Resonance Spectroscopy.
Recommended from our members
3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.
A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria
- …