4,138 research outputs found

    Symmetric Skyrmions

    Get PDF
    We present candidates for the global minimum energy solitons of charge one to nine in the Skyrme model, generated using sophisticated numerical algorithms. Assuming the Skyrme model accurately represents the low energy limit of QCD, these configurations correspond to the classical nuclear ground states of the light elements. The solitons found are particularly symmetric, for example, the charge seven skyrmion has icosahedral symmetry, and the shapes are shown to fit a remarkable sequence defined by a geometric energy minimization (GEM) rule. We also calculate the energies and sizes to within at least a few percent accuracy. These calculations provide the basis for a future investigation of the low energy vibrational modes of skyrmions and hence the possibility of testing the Skyrme model against experiment.Comment: latex, 9 pages, 1 figure (fig1.gif

    Symmetric Instantons and Skyrme Fields

    Get PDF
    By explicit construction of the ADHM data, we prove the existence of a charge seven instanton with icosahedral symmetry. By computing the holonomy of this instanton we obtain a Skyrme field which approximates the minimal energy charge seven Skyrmion. We also present a one parameter family of tetrahedrally symmetric instantons whose holonomy gives a family of Skyrme fields which models a Skyrmion scattering process, where seven well-separated Skyrmions collide to form the icosahedrally symmetric Skyrmion.Comment: 22 pages plus 1 figure in GIF forma

    Basins of attraction of metastable states of the spherical pp-spin model

    Full text link
    We study the basins of attraction of metastable states in the spherical pp-spin spin glass model, starting the relaxation dynamics at a given distance from a thermalized condition. Weighting the initial condition with the Boltzmann distribution we find a finite size for the basins. On the contrary, a white weighting of the initial condition implies vanishing basins of attraction. We make the corresponding of our results with the ones of a recently constructed effective potential.Comment: LaTeX, 7 pages, 7 eps figure

    Inversion symmetric 3-monopoles and the Atiyah-Hitchin manifold

    Get PDF
    We consider 3-monopoles symmetric under inversion symmetry. We show that the moduli space of these monopoles is an Atiyah-Hitchin submanifold of the 3-monopole moduli space. This allows what is known about 2-monopole dynamics to be translated into results about the dynamics of 3-monopoles. Using a numerical ADHMN construction we compute the monopole energy density at various points on two interesting geodesics. The first is a geodesic over the two-dimensional rounded cone submanifold corresponding to right angle scattering and the second is a closed geodesic for three orbiting monopoles.Comment: latex, 22 pages, 2 figures. To appear in Nonlinearit

    Radiative Corrections to the Inflaton Potential as an Explanation of Suppressed Large Scale Power in Density Perturbations and the Cosmic Microwave Background

    Full text link
    The Wilkinson Microwave Anisotropy Probe microwave background data suggest that the primordial spectrum of scalar curvature fluctuations is suppressed at small wavenumbers. We propose a UV/IR mixing effect in small-field inflationary models that can explain the observable deviation in WMAP data from the concordance model. Specifically, in inflationary models where the inflaton couples to an asymptotically free gauge theory, the radiative corrections to the effective inflaton potential can be anomalously large. This occurs for small values of the inflaton field which are of the order of the gauge theory strong coupling scale. Radiative corrections cause the inflaton potential to blow up at small values of the inflaton field. As a result, these corrections can violate the slow-roll condition at the initial stage of the inflation and suppress the production of scalar density perturbations.Comment: 20 pages, 2 figures, v2: refs added, v3: JCAP versio
    • …
    corecore