30,768 research outputs found

    Geodesic scattering by surface deformations of a topological insulator

    Get PDF
    We consider the classical ballistic dynamics of massless electrons on the conducting surface of a three-dimensional topological insulator, influenced by random variations of the surface height. By solving the geodesic equation and the Boltzmann equation in the limit of shallow deformations, we obtain the scattering cross section and the conductivity {\sigma}, for arbitrary anisotropic dispersion relation. At large surface electron densities n this geodesic scattering mechanism (with {\sigma} propto sqrt{n}) is more effective at limiting the surface conductivity than electrostatic potential scattering.Comment: 9 pages, 5 figure

    An alternative non-Markovianity measure by divisibility of dynamical map

    Full text link
    Identifying non-Markovianity with non-divisibility, we propose a measure for non-Markovinity of quantum process. Three examples are presented to illustrate the non-Markovianity, measure for non-Markovianity is calculated and discussed. Comparison with other measures of non-Markovianity is made. Our non-Markovianity measure has the merit that no optimization procedure is required and it is finite for any quantum process, which greatly enhances the practical relevance of the proposed measure.Comment: 6 pages, 3 figue

    Entanglement detection beyond the CCNR criterion for infinite-dimensions

    Get PDF
    In this paper, in terms of the relation between the state and the reduced states of it, we obtain two inequalities which are valid for all separable states in infinite-dimensional bipartite quantum systems. One of them provides an entanglement criterion which is strictly stronger than the computable cross-norm or realignment (CCNR) criterion.Comment: 11 page

    Competing topological and Kondo insulator phases on a honeycomb lattice

    Full text link
    We investigate the competition between the spin-orbit interaction of itinerant electrons and their Kondo coupling with local moments densely distributed on the honeycomb lattice. We find that the model at half-filling displays a quantum phase transition between topological and Kondo insulators at a nonzero Kondo coupling. In the Kondo-screened case, tuning the electron concentration can lead to a new topological insulator phase. The results suggest that the heavy-fermion phase diagram contains a new regime with a competition among topological, Kondo-coherent and magnetic states, and that the regime may be especially relevant to Kondo lattice systems with 5d5d-conduction electrons. Finally, we discuss the implications of our results in the context of the recent experiments on SmB6_6 implicating the surface states of a topological insulator, as well as the existing experiments on the phase transitions in SmB6_6 under pressure and in CeNiSn under chemical pressure.Comment: (v3) Published version including the main text (5 pages + 4 figures) and a supplementary material discussing the effects of quantum fluctuations of the slave bosons and antiferromagnetic ordering of the local moments on the transitions among the Kondo, magnetic and topological state
    corecore