2,291 research outputs found

    Shot noise in superconducting junctions with weak link formed by Anderson impurity

    Full text link
    A theory is developed to study shot noise in superconducting (SAS) and hybrid (SAN) junctions with singly occupied Anderson impurity (A) as a weak link. The zero-frequency DC component of the shot noise spectral density is calculated at zero temperature as a function of the bias at different Coulomb repulsion strengths U, and show a remarkable structure resulting from combination of electron-electron interaction and Andreev reflections.Comment: 4 two column pages including 4 .eps figure

    Coherent pulse detection and multi-channel coherent detection based on a single balanced homodyne receiver

    Get PDF
    The performance of coherent pulse detection (CPD) and multichannel coherent detection (MCCD) based on a single dual-balanced homodyne receiver was experimentally demonstrated using a grating-coupled hybridly mode-locked semiconductor laser. Compared with direct detection, a high coherent gain of over 10 dB, as well as an SNR improvement of over 5 dB, was obtained in both detection schemes. Our experimental results have confirmed that the coherent detection processes in CPD and MCCD are nearly the same based on a square-root LO power dependence. Nevertheless, the MCCD scheme has shown an advantage in a path-length error over the CPD scheme, revealing 2 similar to 3 dB improvement in sensitivities

    Planning for Detroit's Tax-Reverted Properties: Possibilities fo rthe Wayne County Land Bank

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/110958/1/planning_for_detroit_s_tax_reverted_properties2006.pd

    Subgap anomaly and above-energy-gap structure in chains of diffusive SNS junctions

    Full text link
    We present the results of low-temperature transport measurements on chains of superconductor--normal-constriction--superconductor (SNS) junctions fabricated on the basis of superconducting PtSi film. A comparative study of the properties of the chains, consisting of 3 and 20 SNS junctions in series, and single SNS junctions reveals essential distinctions in the behavior of the current-voltage characteristics of the systems: (i) the gradual decrease of the effective suppression voltage for the excess conductivity observed at zero bias as the quantity of the SNS junctions increases, (ii) a rich fine structure on the dependences dV/dI-V at dc bias voltages higher than the superconducting gap and corresponding to some multiples of 2\Delta/e. A model to explain this above-energy-gap structure based on energy relaxation of electron via Cooper-pair-breaking in superconducting island connecting normal metal electrods is proposed.Comment: RevTex, 5 pages, 4 figure

    Nonlocal effects in the shot noise of diffusive superconductor - normal-metal systems

    Full text link
    A cross-shaped diffusive system with two superconducting and two normal electrodes is considered. A voltage eV<ΔeV < \Delta is applied between the normal leads. Even in the absence of average current through the superconducting electrodes their presence increases the shot noise at the normal electrodes and doubles it in the case of a strong coupling to the superconductors. The nonequilibrium noise at the superconducting electrodes remains finite even in the case of a vanishingly small transport current due to the absence of energy transfer into the superconductors. This noise is suppressed by electron-electron scattering at sufficiently high voltages.Comment: 4 pages, RevTeX, 2 eps figure

    Multiple Andreev Reflection and Giant Excess Noise in Diffusive Superconductor/Normal-Metal/Superconductor Junctions

    Get PDF
    We have studied superconductor/normal metal/superconductor (SNS) junctions consisting of short Au or Cu wires between Nb or Al banks. The Nb based junctions display inherent electron heating effects induced by the high thermal resistance of the NS boundaries. The Al based junctions show in addition subharmonic gap structures in the differential conductance dI/dV and a pronounced peak in the excess noise at very low voltages V. We suggest that the noise peak is caused by fluctuations of the supercurrent at the onset of Josephson coupling between the superconducting banks. At intermediate temperatures where the supercurrent is suppressed a noise contribution ~1/V remains, which may be interpreted as shot noise originating from large multiple charges.Comment: 7 pages, 7 figures, extended versio

    Full Current Statistics in Diffusive Normal-Superconductor Structures

    Full text link
    We study the current statistics in normal diffusive conductors in contact with a superconductor. Using an extension of the Keldysh Green's function method we are able to find the full distribution of charge transfers for all temperatures and voltages. For the non-Gaussian regime, we show that the equilibrium current fluctuations are enhanced by the presence of the superconductor. We predict an enhancement of the nonequilibrium current noise for temperatures below and voltages of the order of the Thouless energy E_Th=D/L^2. Our calculation fully accounts for the proximity effect in the normal metal and agrees with experimental data. We demonstrate that the calculation of the full current statistics is in fact simpler than a concrete calculation of the noise.Comment: 4 pages, 2 figures (included

    Coherent low-energy charge transport in a diffusive S-N-S junction

    Full text link
    We have studied the current voltage characteristics of diffusive mesoscopic Nb-Cu-Nb Josephson junctions with highly-transparent Nb-Cu interfaces. We consider the low-voltage and high-temperature regime eV<\epsilon_{c}<k_{B}T where epsilon_{c} is the Thouless energy. The observed excess current as well as the observed sub-harmonic Shapiro steps under microwave irradiation suggest the occurrence of low-energy coherent Multiple Andreev Reflection (MAR).Comment: 4 pages, 4 figures, final versio

    Two-dimensional array of diffusive SNS junctions with high-transparent interfaces

    Full text link
    We report the first comparative study of the properties of two-dimensional arrays and single superconducting film - normal wire - superconducting film (SNS) junctions. The NS interfaces of our SNS junctions are really high transparent, for superconducting and normal metal parts are made from the same material (superconducting polycrystalline PtSi film). We have found that the two-dimensional arrays reveal some novel features: (i) the significant narrowing of the zero bias anomaly (ZBA) in comparison with single SNS junctions, (ii) the appearance of subharmonic energy gap structure (SGS), with up to n=16 (eV=\pm 2\Delta/n), with some numbers being lost, (iii) the transition from 2D logarithmic weak localization behavior to metallic one. Our experiments show that coherent phenomena governed by the Andreev reflection are not only maintained over the macroscopic scale but manifest novel pronounced effects as well. The behavior of the ZBA and SGS in 2D array of SNS junctions strongly suggests that the development of a novel theoretical approach is needed which would self-consistently take into account the distribution of the currents, the potentials, and the superconducting order parameter.Comment: RevTex, 5 pages, 5 figure

    Reference standardization and triglyceride interference of a new homogeneous HDL-cholesterol assay compared with a former chemical precipitation assay

    Get PDF
    A homogeneous HDL-c assay (HDL-H), which uses polyethylene glycol-modified enzymes and sulfated alpha-cyclodextrin, was assessed for precision, accuracy, and cholesterol and triglyceride interference. In addition, its analytical performance was compared with that of a phosphotungstic acid (PTA)/MgCl2 precipitation method (HDL-P). Within-run CVs were < or = 1.87%; total CVs were < or = 3.08%. Accuracy was evaluated in fresh normotriglyceridemic sera using the Designated Comparison Method (HDL-H = 1.037 Designated Comparison Method + 4 mg/L; n = 63) and in moderately hypertriglyceridemic sera by using the Reference Method (HDL-H = 1.068 Reference Method - 17 mg/L; n = 41). Mean biases were 4.5% and 2.2%, respectively. In hypertriglyceridemic sera (n = 85), HDL-H concentrations were increasingly positively biased with increasing triglyceride concentrations. The method comparison between HDL-H and HDL-P yielded the following equation: HDL-H = 1.037 HDL-P + 15 mg/L; n = 478. We conclude that HDL-H amply meets the 1998 NCEP recommendations for total error; its precision is superior compared with that of HDL-P, and its average bias remains below +/-5% as long as triglyceride concentrations are < or = 10 g/L and in case of moderate hypercholesterolemia
    • …
    corecore