4 research outputs found

    Language Therapy in British Sign Language: A study exploring the use of therapeutic strategies and resources by Deaf adults working with young people who have language learning difficulties in British Sign Language (BSL)

    Get PDF
    Deaf practitioners, with varied backgrounds, training experience, roles and qualifications, currently work with d/Deaf children who have difficulties in their development of sign language. With the long term aim of improving practice, three questions were addressed: 1. How do Deaf practitioners (DPs) currently work with d/Deaf children who have language difficulties? 2. Can language therapy strategies and resources developed for spoken language be adapted for language therapy in BSL? 3. Can therapy strategy and resource use bring observable change to DPs’ therapeutic skills? The study had three phases. In Phase 1, questionnaires and focus groups asked DPs about current practice. In Phase 2, 4 DPs and the Speech and Language Therapist (SLT) researcher collaborated to deliver language therapy in BSL. Questionnaires, observation schedules and discussion gathered feedback from DPs. Phase 3, based on findings from Phases 1 and 2, comprised a training course for 17 DPs and SLTs. Theoretical information, with data examples from Phases 1 and 2, provided a basis for the training. Course participants provided information about their knowledge and confidence about language therapy in BSL before and after the course with their reflections on the usefulness of the information presented. In summary, the study confirmed that DPs have varying skills, knowledge and confidence. There are challenges for DPs, including accessing information on language disorder, language context, language mixing, and bilingualism. The roles of DPs and the availability of other professionals, such as SLTs, for co-working can make it challenging for practitioners to provide therapeutic intervention. DPs reported training and co-working aided their work. Participants identified a need for shared terminology to discuss language difficulties and intervention in English and BSL. A shared framework for assessment, goal setting, therapy and evaluation is needed. More accessible information, resources, training and supervision would support DPs and SLTs in this work

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Abiraterone acetate plus prednisolone with or without enzalutamide for patients with metastatic prostate cancer starting androgen deprivation therapy: final results from two randomised phase 3 trials of the STAMPEDE platform protocol

    Get PDF
    Background: Abiraterone acetate plus prednisolone (herein referred to as abiraterone) or enzalutamide added at the start of androgen deprivation therapy improves outcomes for patients with metastatic prostate cancer. Here, we aimed to evaluate long-term outcomes and test whether combining enzalutamide with abiraterone and androgen deprivation therapy improves survival. Methods: We analysed two open-label, randomised, controlled, phase 3 trials of the STAMPEDE platform protocol, with no overlapping controls, conducted at 117 sites in the UK and Switzerland. Eligible patients (no age restriction) had metastatic, histologically-confirmed prostate adenocarcinoma; a WHO performance status of 0–2; and adequate haematological, renal, and liver function. Patients were randomly assigned (1:1) using a computerised algorithm and a minimisation technique to either standard of care (androgen deprivation therapy; docetaxel 75 mg/m2 intravenously for six cycles with prednisolone 10 mg orally once per day allowed from Dec 17, 2015) or standard of care plus abiraterone acetate 1000 mg and prednisolone 5 mg (in the abiraterone trial) orally or abiraterone acetate and prednisolone plus enzalutamide 160 mg orally once a day (in the abiraterone and enzalutamide trial). Patients were stratified by centre, age, WHO performance status, type of androgen deprivation therapy, use of aspirin or non-steroidal anti-inflammatory drugs, pelvic nodal status, planned radiotherapy, and planned docetaxel use. The primary outcome was overall survival assessed in the intention-to-treat population. Safety was assessed in all patients who started treatment. A fixed-effects meta-analysis of individual patient data was used to compare differences in survival between the two trials. STAMPEDE is registered with ClinicalTrials.gov (NCT00268476) and ISRCTN (ISRCTN78818544). Findings: Between Nov 15, 2011, and Jan 17, 2014, 1003 patients were randomly assigned to standard of care (n=502) or standard of care plus abiraterone (n=501) in the abiraterone trial. Between July 29, 2014, and March 31, 2016, 916 patients were randomly assigned to standard of care (n=454) or standard of care plus abiraterone and enzalutamide (n=462) in the abiraterone and enzalutamide trial. Median follow-up was 96 months (IQR 86–107) in the abiraterone trial and 72 months (61–74) in the abiraterone and enzalutamide trial. In the abiraterone trial, median overall survival was 76·6 months (95% CI 67·8–86·9) in the abiraterone group versus 45·7 months (41·6–52·0) in the standard of care group (hazard ratio [HR] 0·62 [95% CI 0·53–0·73]; p<0·0001). In the abiraterone and enzalutamide trial, median overall survival was 73·1 months (61·9–81·3) in the abiraterone and enzalutamide group versus 51·8 months (45·3–59·0) in the standard of care group (HR 0·65 [0·55–0·77]; p<0·0001). We found no difference in the treatment effect between these two trials (interaction HR 1·05 [0·83–1·32]; pinteraction=0·71) or between-trial heterogeneity (I2 p=0·70). In the first 5 years of treatment, grade 3–5 toxic effects were higher when abiraterone was added to standard of care (271 [54%] of 498 vs 192 [38%] of 502 with standard of care) and the highest toxic effects were seen when abiraterone and enzalutamide were added to standard of care (302 [68%] of 445 vs 204 [45%] of 454 with standard of care). Cardiac causes were the most common cause of death due to adverse events (five [1%] with standard of care plus abiraterone and enzalutamide [two attributed to treatment] and one (<1%) with standard of care in the abiraterone trial). Interpretation: Enzalutamide and abiraterone should not be combined for patients with prostate cancer starting long-term androgen deprivation therapy. Clinically important improvements in survival from addition of abiraterone to androgen deprivation therapy are maintained for longer than 7 years. Funding: Cancer Research UK, UK Medical Research Council, Swiss Group for Clinical Cancer Research, Janssen, and Astellas
    corecore